Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120301    DOI: 10.1088/1674-1056/abff1f
GENERAL Prev   Next  

Three-party reference frame independent quantum key distribution protocol

Comfort Sekga and Mhlambululi Mafu
Department of Physics and Astronomy, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana
Abstract  We present a three-party reference frame independent quantum key distribution protocol which can be implemented without any alignment of reference frames between the sender and the receiver. The protocol exploits entangled states to establish a secret key among three communicating parties. We derive the asymptotic key rate for the proposed protocol against collective attacks and perform a finite-size key security analysis against general attacks in the presence of statistical fluctuations. We investigate the impact of reference frame misalignment on the stability of our protocol, and we obtain a transmission distance of 180 km, 200 km, and 230 km for rotation of reference frames β=π/6, β=π/8 and β=0, respectively. Remarkably, our results demonstrate that our proposed protocol is not heavily affected by an increase in misalignment of reference frames as the achievable transmission distances are still comparable to the case where there is no misalignment in reference frames (when β=0). We also simulate the performance of our protocol for a fixed number of signals. Our results demonstrate that the protocol can achieve an effective key generation rate over a transmission distance of about 120 km with realistic 107 finite data signals and approximately achieve 195 km with 109 signals. Moreover, our proposed protocol is robust against noise in the quantum channel and achieves a threshold error rate of 22.7%.
Keywords:  three-party reference frame independent      quantum key distribution      finite-size key security  
Received:  21 February 2021      Revised:  08 April 2021      Accepted manuscript online:  08 May 2021
PACS:  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the Botswana International University of Science and Technology Research Initiation (Grant Nos. R00015 and S00100).
Corresponding Authors:  Mhlambululi Mafu     E-mail:  mafum@biust.ac.bw

Cite this article: 

Comfort Sekga and Mhlambululi Mafu Three-party reference frame independent quantum key distribution protocol 2021 Chin. Phys. B 30 120301

[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[2] Bennett C and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175 (Bangalore, India)
[3] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012
[4] Mao Y, Zeng P and Chen T Y 2020 Adv. Quantum Technol. 4 2000084
[5] Mirza A and Petruccione F 2010 J. Opt. Soc. Am. B 27 A185
[6] Peev M, Pacher C, Alléaume R, Barreiro C, et al. 2009 New J. Phys. 11 075001
[7] Sasaki M, Fujiwara M, Ishizuka H, et al. 2011 Opt. Express 19 10387
[8] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739
[9] Courtland R 2016 IEEE Spectrum. 53 11
[10] Bedington R, Arrazola J M and Ling A 2017 npj Quantum Inf. 3 30
[11] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43
[12] Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140
[13] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501
[14] Scarani V and Kurtsiefer C 2014 Theor. Comput. Sci. 560 27
[15] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400
[16] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006
[17] Mirhosseini M, Magaña-Loaiza O S, O’Sullivan M N, Rodenburg B, Malik M, Lavery M P J, Padgett M J, Gauthier D J and Boyd R W 2015 New J. Phys. 17 033033
[18] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305
[19] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304
[20] Wabnig J, Bitauld D, Li H, Laing A, O’Brien J and Niskanen A 2013 New J. Phys. 15 073001
[21] Zhang P, Aungskunsiri K, Martín-López E, et al. 2014 Phys. Rev. Lett. 112 130501
[22] D’ambrosio V, Nagali E, Walborn S P, Aolita L, Slussarenko S, Marrucci L and Sciarrino F 2012 Nat. Commun. 3 961
[23] Fang X, Wang C, Han Y G, Yin Z Q, Chen W and Han Z F 2016 Commun. Theor. Phys. 66 496
[24] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319
[25] Zhang C M, Zhu J R and Wang Q 2017 J. Lightwave Technol. 35 4574
[26] Yin H L and Fu Y 2019 Sci. Rep. 9 3045
[27] Liu H, Wang J, Ma H and Sun S 2019 Phys. Rev. Appl 12 034039
[28] Li Q, Zhu C, Ma S, Wei K and Pei C 22018 Int. J. Theor. Phys. 57 2192
[29] Liu K, Li J, Zhu J R, Zhang C M and Wang Q 2017 Chin. Phys. B 26 120302
[30] Sekga C and Mafu M 2021 J. Phys. Commun. 5 045008
[31] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502
[32] Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y, Huang J Z, Guo G C and Han Z F 2014 Sci. Rep. 4 3617
[33] Wang J, Liu H, Ma H and Sun S 2019 Phys. Rev. A 99 032309
[34] Ribeiro J, Murta G and Wehner S 2018 Phys. Rev. A 97 022307
[35] Christandl M, König R and Renner R 2009 Phys. Rev. Lett. 102 020504
[36] Renner R 2007 Nat. Phys. 3 645
[37] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44
[38] Yin H L and Chen Z B 2019 Sci. Rep. 9 17113
[39] Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 1
[40] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326
[41] Fung C H F, Ma X and Chau H 2010 Phys. Rev. A 81 012318
[42] Lo H K, Chau H F and Ardehali M 2005 J. Cryptol. 18 133
[43] Pironio S, Acin A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021
[44] Ma X, Fung C H F and Lo H K 2007 Phys. Rev. A 76 012307
[45] Zhang C M, Zhu J R and Wang Q 2018 J. Phys. Commun. 2 055029
[46] Mafu M, Garapo K and Petruccione F 2013 Phys. Rev. A 88 062306
[47] Mafu M, Garapo K and Petruccione F 2014 Phys. Rev. A 90 032308
[48] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634
[49] Wei Z, Wang W, Zhang Z, Gao M, Ma Z and Ma X 2013 Sci. Rep. 3 2453
[50] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[51] Renner R 2008 Int. J. Quantum Inf 6 1
[52] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506
[1] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[2] Performance of phase-matching quantum key distribution based on wavelength division multiplexing technology
Haiqiang Ma(马海强), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), and Pengyun Li(李鹏云). Chin. Phys. B, 2023, 32(2): 020304.
[3] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[4] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[5] Practical security analysis of continuous-variable quantum key distribution with an unbalanced heterodyne detector
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), and Chen He(贺晨). Chin. Phys. B, 2022, 31(7): 070303.
[6] Quantum key distribution transmitter chip based on hybrid-integration of silica and lithium niobates
Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Dan Wu (吴丹), and Jun-Ming An (安俊明). Chin. Phys. B, 2022, 31(6): 064212.
[7] Short-wave infrared continuous-variable quantum key distribution over satellite-to-submarine channels
Qingquan Peng(彭清泉), Qin Liao(廖骎), Hai Zhong(钟海), Junkai Hu(胡峻凯), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(6): 060306.
[8] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[9] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[10] Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
Xiao-Ming Chen(陈小明), Lei Chen(陈雷), and Ya-Long Yan(阎亚龙). Chin. Phys. B, 2022, 31(12): 120304.
[11] Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit
Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明). Chin. Phys. B, 2021, 30(8): 080302.
[12] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[13] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[14] Reference-frame-independent quantum key distribution of wavelength division multiplexing with multiple quantum channels
Zhongqi Sun(孙钟齐), Yanxin Han(韩雁鑫), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Zhenhua Li(李振华), Fen Zhou(周芬), Yuqing Huang(黄雨晴), and Haiqiang Ma(马海强). Chin. Phys. B, 2021, 30(11): 110303.
[15] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
No Suggested Reading articles found!