|
|
Three-party reference frame independent quantum key distribution protocol |
Comfort Sekga and Mhlambululi Mafu† |
Department of Physics and Astronomy, Botswana International University of Science and Technology, P/Bag 16, Palapye, Botswana |
|
|
Abstract We present a three-party reference frame independent quantum key distribution protocol which can be implemented without any alignment of reference frames between the sender and the receiver. The protocol exploits entangled states to establish a secret key among three communicating parties. We derive the asymptotic key rate for the proposed protocol against collective attacks and perform a finite-size key security analysis against general attacks in the presence of statistical fluctuations. We investigate the impact of reference frame misalignment on the stability of our protocol, and we obtain a transmission distance of 180 km, 200 km, and 230 km for rotation of reference frames β=π/6, β=π/8 and β=0, respectively. Remarkably, our results demonstrate that our proposed protocol is not heavily affected by an increase in misalignment of reference frames as the achievable transmission distances are still comparable to the case where there is no misalignment in reference frames (when β=0). We also simulate the performance of our protocol for a fixed number of signals. Our results demonstrate that the protocol can achieve an effective key generation rate over a transmission distance of about 120 km with realistic 107 finite data signals and approximately achieve 195 km with 109 signals. Moreover, our proposed protocol is robust against noise in the quantum channel and achieves a threshold error rate of 22.7%.
|
Received: 21 February 2021
Revised: 08 April 2021
Accepted manuscript online: 08 May 2021
|
PACS:
|
03.67.Dd
|
(Quantum cryptography and communication security)
|
|
Fund: Project supported by the Botswana International University of Science and Technology Research Initiation (Grant Nos. R00015 and S00100). |
Corresponding Authors:
Mhlambululi Mafu
E-mail: mafum@biust.ac.bw
|
Cite this article:
Comfort Sekga and Mhlambululi Mafu Three-party reference frame independent quantum key distribution protocol 2021 Chin. Phys. B 30 120301
|
[1] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145 [2] Bennett C and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175 (Bangalore, India) [3] Pirandola S, Andersen U L, Banchi L, et al. 2020 Adv. Opt. Photonics 12 1012 [4] Mao Y, Zeng P and Chen T Y 2020 Adv. Quantum Technol. 4 2000084 [5] Mirza A and Petruccione F 2010 J. Opt. Soc. Am. B 27 A185 [6] Peev M, Pacher C, Alléaume R, Barreiro C, et al. 2009 New J. Phys. 11 075001 [7] Sasaki M, Fujiwara M, Ishizuka H, et al. 2011 Opt. Express 19 10387 [8] Wang S, Chen W, Yin Z Q, et al. 2014 Opt. Express 22 21739 [9] Courtland R 2016 IEEE Spectrum. 53 11 [10] Bedington R, Arrazola J M and Ling A 2017 npj Quantum Inf. 3 30 [11] Liao S K, Cai W Q, Liu W Y, et al. 2017 Nature 549 43 [12] Yin J, Cao Y, Li Y H, et al. 2017 Science 356 1140 [13] Liao S K, Cai W Q, Handsteiner J, et al. 2018 Phys. Rev. Lett. 120 030501 [14] Scarani V and Kurtsiefer C 2014 Theor. Comput. Sci. 560 27 [15] Lucamarini M, Yuan Z L, Dynes J F and Shields A J 2018 Nature 557 400 [16] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006 [17] Mirhosseini M, Magaña-Loaiza O S, O’Sullivan M N, Rodenburg B, Malik M, Lavery M P J, Padgett M J, Gauthier D J and Boyd R W 2015 New J. Phys. 17 033033 [18] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M, Padgett M J, Konrad T, Petruccione F, Lütkenhaus N and Forbes A 2013 Phys. Rev. A 88 032305 [19] Laing A, Scarani V, Rarity J G and O’Brien J L 2010 Phys. Rev. A 82 012304 [20] Wabnig J, Bitauld D, Li H, Laing A, O’Brien J and Niskanen A 2013 New J. Phys. 15 073001 [21] Zhang P, Aungskunsiri K, Martín-López E, et al. 2014 Phys. Rev. Lett. 112 130501 [22] D’ambrosio V, Nagali E, Walborn S P, Aolita L, Slussarenko S, Marrucci L and Sciarrino F 2012 Nat. Commun. 3 961 [23] Fang X, Wang C, Han Y G, Yin Z Q, Chen W and Han Z F 2016 Commun. Theor. Phys. 66 496 [24] Wang C, Sun S H, Ma X C, Tang G Z and Liang L M 2015 Phys. Rev. A 92 042319 [25] Zhang C M, Zhu J R and Wang Q 2017 J. Lightwave Technol. 35 4574 [26] Yin H L and Fu Y 2019 Sci. Rep. 9 3045 [27] Liu H, Wang J, Ma H and Sun S 2019 Phys. Rev. Appl 12 034039 [28] Li Q, Zhu C, Ma S, Wei K and Pei C 22018 Int. J. Theor. Phys. 57 2192 [29] Liu K, Li J, Zhu J R, Zhang C M and Wang Q 2017 Chin. Phys. B 26 120302 [30] Sekga C and Mafu M 2021 J. Phys. Commun. 5 045008 [31] Wang C, Song X T, Yin Z Q, Wang S, Chen W, Zhang C M, Guo G C and Han Z F 2015 Phys. Rev. Lett. 115 160502 [32] Liang W Y, Wang S, Li H W, Yin Z Q, Chen W, Yao Y, Huang J Z, Guo G C and Han Z F 2014 Sci. Rep. 4 3617 [33] Wang J, Liu H, Ma H and Sun S 2019 Phys. Rev. A 99 032309 [34] Ribeiro J, Murta G and Wehner S 2018 Phys. Rev. A 97 022307 [35] Christandl M, König R and Renner R 2009 Phys. Rev. Lett. 102 020504 [36] Renner R 2007 Nat. Phys. 3 645 [37] Lütkenhaus N and Jahma M 2002 New J. Phys. 4 44 [38] Yin H L and Chen Z B 2019 Sci. Rep. 9 17113 [39] Curty M, Xu F, Cui W, Lim C C W, Tamaki K and Lo H K 2014 Nat. Commun. 5 1 [40] Ma X, Qi B, Zhao Y and Lo H K 2005 Phys. Rev. A 72 012326 [41] Fung C H F, Ma X and Chau H 2010 Phys. Rev. A 81 012318 [42] Lo H K, Chau H F and Ardehali M 2005 J. Cryptol. 18 133 [43] Pironio S, Acin A, Brunner N, Gisin N, Massar S and Scarani V 2009 New J. Phys. 11 045021 [44] Ma X, Fung C H F and Lo H K 2007 Phys. Rev. A 76 012307 [45] Zhang C M, Zhu J R and Wang Q 2018 J. Phys. Commun. 2 055029 [46] Mafu M, Garapo K and Petruccione F 2013 Phys. Rev. A 88 062306 [47] Mafu M, Garapo K and Petruccione F 2014 Phys. Rev. A 90 032308 [48] Tomamichel M, Lim C C W, Gisin N and Renner R 2012 Nat. Commun. 3 634 [49] Wei Z, Wang W, Zhang Z, Gao M, Ma Z and Ma X 2013 Sci. Rep. 3 2453 [50] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441 [51] Renner R 2008 Int. J. Quantum Inf 6 1 [52] Tomamichel M and Renner R 2011 Phys. Rev. Lett. 106 110506 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|