1 State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract The successfully experimental fabrication of two-dimensional Te monolayer films [Phys. Rev. Lett.119 106101 (2017)] has promoted the researches on the group-VI monolayer materials. In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely, α-TeSe2, β-TeSe2, and γ-TeSe2, are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable. All the three structures are semiconductors with indirect band gaps. Very interestingly, the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px, py orbitals and Te px, py orbitals during the process. Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
(Electronic structure and bonding characteristics)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574051 and 11874117) and Natural Science Foundation of Shanghai, China (Grant No. 21ZR1408200).
Corresponding Authors:
Zhongqin Yang
E-mail: zyang@fudan.edu.cn
Cite this article:
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹) Electronic structures and topological properties of TeSe2 monolayers 2021 Chin. Phys. B 30 117304
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science306 666 [2] Kane C L and Mele E J 2005 Phys. Rev. Lett.95 226801 [3] Qiao Z H, Yang S Y, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B82 161414(R) [4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett.99 236809 [5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol.7 699 [6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin.69 017301 (in Chinese) [7] Hou Y H, Zhang T, Sun J T, Liu L W, Yao Y G and Wang Y L 2020 Chin. Phys. B29 097304 [8] Geim A K and Novoselov K S 2007 Nat. Mater.6 183 [9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature490 192 [10] Fang W Y, Kang W B, Zhao J and Zhang P C 2020 Chin. Phys. B29 096301 [11] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem.8 563 [12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin Diego, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science350 1513 [13] Guzmán-Verr G G and Lew Yan Voon L C 2007 Phys. Rev. B76 075131 [14] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett.109 056804 [15] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett.108 155501 [16] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat Mat.14 1020 [17] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol.9 372 [18] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano8 4033 [19] Cheng F and He B 2016 Chin. Phys. Lett.33 057301 [20] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed.54 3112 [21] Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F and Zeng H B 2016 Nat. Commun.7 13352 [22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science357 287 [23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech.6 147 [24] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys.10 343 [25] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B85 205302 [26] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett.10 1271 [27] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater.27 612 [28] Haldane F D M 1988 Phys. Rev. Lett.61 2015 [29] Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L and Yang Z Q 2018 Phys. Rev. B97 085401 [30] Bernevig B A, Hughes T L and Zhang S C 2006 Science314 1757 [31] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science340 167 [32] Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y and Zhang Z Y 2017 Phys. Rev. Lett.119 106101 [33] Yan C L, Wang C, Zhou L W, Guo P J, Liu K, Lu Z Y, Cheng Z H, Chai Y, Pan A L and Ji W 2020 Chin. Phys. B29 097103 [34] Qian X F, Liu J W, Fu L and Li J 2014 Science346 1344 [35] Kresse G and Furthmuller J 1996 Phys. Rev. B54 11169 [36] Blöchl P E 1994 Phys. Rev. B50 17953 [37] Kresse G and Joubert D 1999 Phys. Rev. B59 1758 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett.77 3865 [39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun.178 685 [40] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun.224 405 [41] Wu B Z, Yin J R, Ding Y H and Zhang P 2017 Sci. China Mater.60 747 [42] Liu C C, Guan S, Song Z G, Yang S Y A, Yang J B and Yao Y G 2014 Phys. Rev. B90 085431 [43] Zhou T, Zhang J Y, Xue Y, Zhao B, Zhang H S, Jiang H and Yang Z Q 2016 Phys. Rev. B94 235449 [44] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B93 035135 [45] Xue Y, Zhang J Y, Zhao B, Wei X Y and Yang Z Q 2018 Nanoscale10 8569 [46] Xue Y, Zhao B, Zhu Y, Zhou T, Zhang J Y, Li N B, Jiang H and Yang Z Q 2018 NPG Asia Mater.10 467 [47] Amorim B, Cortijo A, Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M and Vozmediano M A H 2016 Phys. Rep.617 1 [48] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P and San-Miguel A 2017 Nano Lett.17 21 [49] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B81 081407(R) [50] Ren Y and Cheng F 2017 Chin. Phys. Lett.34 027302 [51] Xi X X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett.117 106801 [52] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B84 075119
A self-powered and sensitive terahertz photodetection based on PdSe2 Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.