CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures and topological properties of TeSe2 monolayers |
Zhengyang Wan(万正阳)1, Hao Huan(郇昊)1, Hairui Bao(鲍海瑞)1, Xiaojuan Liu(刘晓娟)1, and Zhongqin Yang(杨中芹)1,2,† |
1 State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China |
|
|
Abstract The successfully experimental fabrication of two-dimensional Te monolayer films [Phys. Rev. Lett. 119 106101 (2017)] has promoted the researches on the group-VI monolayer materials. In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely, α-TeSe2, β-TeSe2, and γ-TeSe2, are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable. All the three structures are semiconductors with indirect band gaps. Very interestingly, the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px, py orbitals and Te px, py orbitals during the process. Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
|
Received: 27 July 2021
Revised: 02 September 2021
Accepted manuscript online: 08 September 2021
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
31.15.es
|
(Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))
|
|
31.15.ae
|
(Electronic structure and bonding characteristics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574051 and 11874117) and Natural Science Foundation of Shanghai, China (Grant No. 21ZR1408200). |
Corresponding Authors:
Zhongqin Yang
E-mail: zyang@fudan.edu.cn
|
Cite this article:
Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹) Electronic structures and topological properties of TeSe2 monolayers 2021 Chin. Phys. B 30 117304
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666 [2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [3] Qiao Z H, Yang S Y, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R) [4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809 [5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699 [6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese) [7] Hou Y H, Zhang T, Sun J T, Liu L W, Yao Y G and Wang Y L 2020 Chin. Phys. B 29 097304 [8] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183 [9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192 [10] Fang W Y, Kang W B, Zhao J and Zhang P C 2020 Chin. Phys. B 29 096301 [11] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563 [12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin Diego, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513 [13] Guzmán-Verr G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131 [14] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804 [15] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501 [16] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat Mat. 14 1020 [17] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372 [18] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano 8 4033 [19] Cheng F and He B 2016 Chin. Phys. Lett. 33 057301 [20] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112 [21] Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F and Zeng H B 2016 Nat. Commun. 7 13352 [22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287 [23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147 [24] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343 [25] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302 [26] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271 [27] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612 [28] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [29] Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L and Yang Z Q 2018 Phys. Rev. B 97 085401 [30] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757 [31] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167 [32] Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101 [33] Yan C L, Wang C, Zhou L W, Guo P J, Liu K, Lu Z Y, Cheng Z H, Chai Y, Pan A L and Ji W 2020 Chin. Phys. B 29 097103 [34] Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344 [35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 [36] Blöchl P E 1994 Phys. Rev. B 50 17953 [37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 [38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685 [40] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun. 224 405 [41] Wu B Z, Yin J R, Ding Y H and Zhang P 2017 Sci. China Mater. 60 747 [42] Liu C C, Guan S, Song Z G, Yang S Y A, Yang J B and Yao Y G 2014 Phys. Rev. B 90 085431 [43] Zhou T, Zhang J Y, Xue Y, Zhao B, Zhang H S, Jiang H and Yang Z Q 2016 Phys. Rev. B 94 235449 [44] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135 [45] Xue Y, Zhang J Y, Zhao B, Wei X Y and Yang Z Q 2018 Nanoscale 10 8569 [46] Xue Y, Zhao B, Zhu Y, Zhou T, Zhang J Y, Li N B, Jiang H and Yang Z Q 2018 NPG Asia Mater. 10 467 [47] Amorim B, Cortijo A, Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M and Vozmediano M A H 2016 Phys. Rep. 617 1 [48] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P and San-Miguel A 2017 Nano Lett. 17 21 [49] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407(R) [50] Ren Y and Cheng F 2017 Chin. Phys. Lett. 34 027302 [51] Xi X X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801 [52] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|