Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 117304    DOI: 10.1088/1674-1056/ac2489
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic structures and topological properties of TeSe2 monolayers

Zhengyang Wan(万正阳)1, Hao Huan(郇昊)1, Hairui Bao(鲍海瑞)1, Xiaojuan Liu(刘晓娟)1, and Zhongqin Yang(杨中芹)1,2,†
1 State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences(MOE) & Department of Physics, Fudan University, Shanghai 200433, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
Abstract  The successfully experimental fabrication of two-dimensional Te monolayer films [Phys. Rev. Lett. 119 106101 (2017)] has promoted the researches on the group-VI monolayer materials. In this work, the electronic structures and topological properties of a group-VI binary compound of TeSe2 monolayers are studied based on the density functional theory and Wannier function method. Three types of structures, namely, α-TeSe2, β-TeSe2, and γ-TeSe2, are proposed for the TeSe2 monolayer among which the α-TeSe2 is found being the most stable. All the three structures are semiconductors with indirect band gaps. Very interestingly, the γ-TeSe2 monolayer becomes a quantum spin Hall (QSH) insulator with a global nontrivial energy gap of 0.14 eV when a 3.5% compressive strain is applied. The opening of the global band gap is understood by the competition between the decrease of the local band dispersion and the weakening of the interactions between the Se px, py orbitals and Te px, py orbitals during the process. Our work realizes topological states in the group-VI monolayers and promotes the potential applications of the materials in spintronics and quantum computations.
Keywords:  two-dimensional material      monolayer TeSe2      quantum spin Hall effect      topological insulator  
Received:  27 July 2021      Revised:  02 September 2021      Accepted manuscript online:  08 September 2021
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.43.Nq (Quantum phase transitions)  
  31.15.es (Applications of density-functional theory (e.g., to electronic structure and stability; defect formation; dielectric properties, susceptibilities; viscoelastic coefficients; Rydberg transition frequencies))  
  31.15.ae (Electronic structure and bonding characteristics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574051 and 11874117) and Natural Science Foundation of Shanghai, China (Grant No. 21ZR1408200).
Corresponding Authors:  Zhongqin Yang     E-mail:  zyang@fudan.edu.cn

Cite this article: 

Zhengyang Wan(万正阳), Hao Huan(郇昊), Hairui Bao(鲍海瑞), Xiaojuan Liu(刘晓娟), and Zhongqin Yang(杨中芹) Electronic structures and topological properties of TeSe2 monolayers 2021 Chin. Phys. B 30 117304

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Qiao Z H, Yang S Y, Feng W X, Tse W K, Ding J, Yao Y G, Wang J and Niu Q 2010 Phys. Rev. B 82 161414(R)
[4] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[5] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[6] Wang H, Xu M and Zheng R K 2020 Acta Phys. Sin. 69 017301 (in Chinese)
[7] Hou Y H, Zhang T, Sun J T, Liu L W, Yao Y G and Wang Y L 2020 Chin. Phys. B 29 097304
[8] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[9] Novoselov K S, Fal'ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[10] Fang W Y, Kang W B, Zhao J and Zhang P C 2020 Chin. Phys. B 29 096301
[11] Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L and Wu K H 2016 Nat. Chem. 8 563
[12] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin Diego, Myers B D, Liu X L, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C and Guisinger N P 2015 Science 350 1513
[13] Guzmán-Verr G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[14] Chen L, Liu C C, Feng B J, He X Y, Cheng P, Ding Z J, Meng S, Yao Y G and Wu K H 2012 Phys. Rev. Lett. 109 056804
[15] Vogt P, Padova P D, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Lay G L 2012 Phys. Rev. Lett. 108 155501
[16] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat Mat. 14 1020
[17] Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H and Zhang Y B 2014 Nat. Nanotechnol. 9 372
[18] Liu H, Neal A T, Zhu Z, Luo Z, Xu X F, Tománek D and Ye P D 2014 ACS Nano 8 4033
[19] Cheng F and He B 2016 Chin. Phys. Lett. 33 057301
[20] Zhang S L, Yan Z, Li Y F, Chen Z F and Zeng H B 2015 Angew. Chem. Int. Ed. 54 3112
[21] Ji J P, Song X F, Liu J Z, Yan Z, Huo C X, Zhang S L, Su M, Liao L, Wang W H, Ni Z H, Hao Y F and Zeng H B 2016 Nat. Commun. 7 13352
[22] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schäfer J and Claessen R 2017 Science 357 287
[23] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotech. 6 147
[24] Xu X D, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[25] Cheiwchanchamnangij T and Lambrecht W R L 2012 Phys. Rev. B 85 205302
[26] Splendiani A, Sun L, Zhang Y B, Li T S, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[27] McGuire M A, Dixit H, Cooper V R and Sales B C 2015 Chem. Mater. 27 612
[28] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[29] Zhang J Y, Zhao B, Zhou T, Xue Y, Ma C L and Yang Z Q 2018 Phys. Rev. B 97 085401
[30] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
[31] Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167
[32] Zhu Z L, Cai X L, Yi S, Chen J L, Dai Y W, Niu C Y, Guo Z X, Xie M H, Liu F, Cho J H, Jia Y and Zhang Z Y 2017 Phys. Rev. Lett. 119 106101
[33] Yan C L, Wang C, Zhou L W, Guo P J, Liu K, Lu Z Y, Cheng Z H, Chai Y, Pan A L and Ji W 2020 Chin. Phys. B 29 097103
[34] Qian X F, Liu J W, Fu L and Li J 2014 Science 346 1344
[35] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[39] Mostofi A A, Yates J R, Lee Y S, Souza I, Vanderbilt D and Marzari N 2008 Comput. Phys. Commun. 178 685
[40] Wu Q S, Zhang S N, Song H F, Troyer M and Soluyanov A A 2018 Comput Phys Commun. 224 405
[41] Wu B Z, Yin J R, Ding Y H and Zhang P 2017 Sci. China Mater. 60 747
[42] Liu C C, Guan S, Song Z G, Yang S Y A, Yang J B and Yao Y G 2014 Phys. Rev. B 90 085431
[43] Zhou T, Zhang J Y, Xue Y, Zhao B, Zhang H S, Jiang H and Yang Z Q 2016 Phys. Rev. B 94 235449
[44] Liang Q F, Yu R, Zhou J and Hu X 2016 Phys. Rev. B 93 035135
[45] Xue Y, Zhang J Y, Zhao B, Wei X Y and Yang Z Q 2018 Nanoscale 10 8569
[46] Xue Y, Zhao B, Zhu Y, Zhou T, Zhang J Y, Li N B, Jiang H and Yang Z Q 2018 NPG Asia Mater. 10 467
[47] Amorim B, Cortijo A, Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M and Vozmediano M A H 2016 Phys. Rep. 617 1
[48] Bousige C, Balima F, Machon D, Pinheiro G S, Torres-Dias A, Nicolle J, Kalita D, Bendiab N, Marty L, Bouchiat V, Montagnac G, Souza Filho A G, Poncharal P and San-Miguel A 2017 Nano Lett. 17 21
[49] Choi S M, Jhi S H and Son Y W 2010 Phys. Rev. B 81 081407(R)
[50] Ren Y and Cheng F 2017 Chin. Phys. Lett. 34 027302
[51] Xi X X, Berger H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801
[52] Yu R, Qi X L, Bernevig A, Fang Z and Dai X 2011 Phys. Rev. B 84 075119
[1] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[2] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[5] A field-effect WSe2/Si heterojunction diode
Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建国), Haoran Sun(孙浩然), Zengguang Cheng(程增光), and Zengxing Zhang(张增星). Chin. Phys. B, 2023, 32(1): 018505.
[6] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[7] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[10] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[11] Effects of phosphorus doping on the physical properties of axion insulator candidate EuIn2As2
Feihao Pan(潘斐豪), Congkuan Tian(田丛宽), Jiale Huang(黄嘉乐), Daye Xu(徐大业), Jinchen Wang (汪晋辰), Peng Cheng(程鹏), Juanjuan Liu(刘娟娟), and Hongxia Zhang(张红霞). Chin. Phys. B, 2022, 31(5): 057502.
[12] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[13] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[14] Ac Josephson effect in Corbino-geometry Josephson junctions constructed on Bi2Te3 surface
Yunxiao Zhang(张云潇), Zhaozheng Lyu(吕昭征), Xiang Wang(王翔), Enna Zhuo(卓恩娜), Xiaopei Sun(孙晓培), Bing Li(李冰), Jie Shen(沈洁), Guangtong Liu(刘广同), Fanming Qu(屈凡明), and Li Lü(吕力). Chin. Phys. B, 2022, 31(10): 107402.
[15] Gate-controlled magnetic transitions in Fe3GeTe2 with lithium ion conducting glass substrate
Guangyi Chen(陈光毅), Yu Zhang(张玉), Shaomian Qi(齐少勉), and Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2021, 30(9): 097504.
No Suggested Reading articles found!