|
|
Control of firing activities in thermosensitive neuron by activating excitatory autapse |
Ying Xu(徐莹)1,† and Jun Ma(马军)2,3 |
1 School of Mathematics and Statistics, Shandong Normal University, Ji'nan 250014, China; 2 Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China; 3 School of Science, Chongqing University of Posts and Telecommunications, Chongqing 430065, China |
|
|
Abstract Temperature has distinct influence on the activation of ion channels and the excitability of neurons, and careful change in temperature can induce possible mode transition in the neural activities. The formation and development of autapse connection to neuron can enhance its self-adaption to external stimulus, and thus the firing patterns in neuron can be controlled effectively. The autapse is activated to drive a thermosensitive neuron, which is developed from the FitzHugh-Nagumo neural circuit by incorporating a thermistor, and the dynamics in the neural activities is explored to find mode dependence on the temperature and autaptic current. It is found that the firing modes can be controlled by temperature, and the neuron is wakened from resting state to periodic oscillation with the increase of temperature. Furthermore, the intensity and the intrinsic time delay in the autapse are respectively adjusted to control the neural activities, and it is confirmed that appropriate setting for autaptic current can balance and enhance the temperature effect on the neural activities.
|
Received: 30 December 2020
Revised: 07 February 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
87.19.lq
|
(Neuronal wave propagation)
|
|
87.18.Hf
|
(Spatiotemporal pattern formation in cellular populations)
|
|
05.45.-a
|
(Nonlinear dynamics and chaos)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12072139 and 12062009). |
Corresponding Authors:
Ying Xu
E-mail: uryysunshine@163.com
|
Cite this article:
Ying Xu(徐莹) and Jun Ma(马军) Control of firing activities in thermosensitive neuron by activating excitatory autapse 2021 Chin. Phys. B 30 100501
|
[1] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500 [2] Tsumoto K, Kitajima H, Yoshinaga T, Aihara K and Kawakami H 2006 Neurocomputing 69 293 [3] Zhu J, Kong C and Liu X 2016 Phys. Rev. E 94 032208 [4] Rusin C G, Johnson S E, Kapur J and Hudson J L 2011 Phys. Rev. E 84 066222 [5] Sun X and Xue T 2018 Int. J. Bifur. Chaos 28 1850143 [6] Hu J, Sui G, Lu X and Li X 2018 Nonlinear Anal.-Model Control 23 904 [7] Yang X, Li X, Xi Q and Duan P 2018 Math. Biosci. Eng. 15 1495 [8] Wang C, Tang J and Ma J 2019 Eur. Phys. J. Spec. Top. 228 1907 [9] Yilmaz E, Ozer M, Baysal V and Perc M 2016 Sci. Rep. 6 30914 [10] Lee S and Kim S 1999 Phys. Rev. E 60 826 [11] Yang L and Jia Y 2005 BioSystems 81 267 [12] Xu Y, Guo Y, Ren G and Ma J 2020 Appl. Math. Comput. 385 125427 [13] Xu Y, Liu M, Zhu Z and Ma J 2020 Chin. Phys. B 29 098704 [14] Wu F, Zhou P, Alsaedi A and Hayat T 2018 Chaos, Solitons and Fractals 110 124 [15] Chen M, Feng Y, Bao H, Bao B C, Yu Y J, Wu H G and Xu Q 2018 Chaos, Solitons and Fractals 115 313 [16] Gu H, Pan B and Li Y 2015 Nonlinear Dyn. 82 1191 [17] Zhang J and Liao X 2019 Nonlinear Dyn. 95 1269 [18] Asai T, Kanazawa Y and Amemiya Y 2003 IEEE Trans. Neural Netw. 14 1308 [19] Liu Z, Wang C, Zhang G and Zhang Y 2019 Int. J. Mod. Phys. B 33 1950170 [20] Hu X and Liu C 2019 Nonlinear Dyn. 97 1721 [21] Babacan Y, Kaçar F and Gürkan K 2016 Neurocomputing 203 86 [22] Ma J, Yang Z, Yang L and Tang J 2019 J. Zhejiang Univ. Sci. A 20 639 [23] Wu F and Gu H 2020 Int. J. Bifur. Chaos 30 2030009 [24] Yao Z, Zhou P, Alsaedi A and Ma J 2020 Appl. Math. Comput. 374 124998 [25] Zhang Y, Wang C, Tang J, Ma J and Ren G 2020 Sci. China-Technol. Sci. 63 2328 [26] Heitler W J and Edwards D H 1998 J. Exp. Biol. 201 503 [27] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821 [28] Dani A, Huang B, Bergan J F, Dulac C and Zhuang X 2010 Neuron 68 843 [29] Balenzuela P and Garciaojalvo J 2005 Phys. Rev. E 72 021901 [30] Buric N, Todorovic K and Vasovic N 2008 Phys. Rev. E 78 036211 [31] Sun X and Li G 2017 Nonlinear Dyn. 89 2509 [32] Ma S, Yao Z, Zhang Y and Ma J 2019 AEU-Int. J. Electron. Commun. 105 177 [33] Xu Y, Jia Y, Wang H, Liu Y and Zhao Y 2019 Nonlinear Dyn. 95 3237 [34] Ma J, Zhang G, Hayat T and Ren G 2019 Nonlinear Dyn. 95 1585 [35] Yilmaz E, Baysal V, Ozer M and Perc M 2016 Physica A 444 538 [36] Wang C, Guo S, Xu Y, Ma J, Tang J, Alzahrani F and Hobiny A 2017 Complexity 2017 5436737 [37] Zhao Z, Li L and Gu H 2020 Commun. Nonlinear Sci. Numer. Simul. 85 105250 [38] Zhao Z, Li L, Gu H and Gao Y 2020 Nonlinear Dyn. 99 1129 [39] Song X, Wang H and Chen Y 2019 Nonlinear Dyn. 96 2341 [40] Ma J, Song X, Tang J and Wang C 2015 Neurocomputing 167 378 [41] Guo S, Tang J, Ma J and Wang C 2017 Complexity 2017 4631602 [42] Kumamoto E and Kuba K 1983 Nature 305 145 [43] Cao B, Wang R, Gu H and Li Y 2021 Cogn. Neurodynamics 15 77 [44] Zhao Z, Li L and Gu H 2020 Sci. Rep. 10 3646 [45] Hindmarsh J L and Rose R M 1982 Nature 296 162 [46] Fitzhugh R 1962 Biophys. J. 2 11 [47] Nagumo J, Arimoto S and Yoshizawa S 1962 Proceedings of the IRE 50 2061 [48] Rajagopal K, Wei Z, Moroz I, Karthikeyan A and Duraisamy P 2020 Chaos, Solitons and Fractals 139 110093 [49] Ge M, Jia Y, Xu Y and Yang L 2018 Nonlinear Dyn. 91 515 [50] Liu Y, Xu Y and Ma J 2020 Commun. Nonlinear Sci. Numer. Simul. 89 105297 [51] Cao Y, Cao Y, Guo Z, Huang T and Wen S 2020 Neural Netw. 123 70 [52] Chua L O 2015 Radioengineering 24 319 [53] Wang Y, Cao Y, Guo Z, Huang T and Wen S 2020 Appl. Math. Comput. 383 125379 [54] Majhi S, Bera B K, Ghosh D and Perc M 2018 Phys. Life Rev. 2018 100 [55] Xu C and Zheng Z 2019 Nonlinear Dyn. 98 2365 [56] Yao Z, Ma J, Yao Y and Wang C 2019 Nonlinear Dyn. 96 205 [57] Yang D, Li X, Shen J and Zhou Z 2018 Math. Meth. Appl. Sci. 41 6968 [58] Li X, Yang X and Huang T 2019 Appl. Math. Comput. 342 130 [59] Zhu F, Wang R, Pan X and Zhu Z 2019 Cogn. Neurodyn. 13 75 [60] Wang Y, Xu X and Wang R 2019 Neural Netw. 2019 110 [61] Li X, O'Regan D and Akca H 2015 IMA J. Appl. Math. 80 85 [62] Jiao X and Wang R 2005 Appl. Phys. Lett. 87 083901 [63] Tian Y, Wang F, Wang Y and Li X 2019 Adv. Differ. Equ. 2019 464 [64] Li X 2012 Appl. Math. Lett. 25 133 [65] Wu T and Yang X 2018 Chaos 28 113120 [66] Xu Y, Ma J, Zhan X and Jia Y 2019 Cogn. Neurodyn. 13 601 [67] Correa AM, Bezanilla F and Latorre R 1992 Biophys. J. 61 1332 [68] Braun H A, Wissing H, Schäfer K and Hirsch M C 1994 Nature 367 270 [69] Zhao Y, Billings S A, Coca D, Guo Y, Ristic R I and Dematos L L 2011 Int. J. Bifurc. Chaos 21 3249 [70] Zhang X, Wang C, Ma J and Ren G 2020 Mod. Phys. Lett. B 34 2050267 [71] Van der Pol B 1926 London: Edinburgh and dublin Philosophical Magazine journal of Science: Series 7 978 [72] Kang J, Jiang L, Goldman S A and Nedergaard M 1998 Nat. Neurosci. 1 683 [73] Hu X and Liu C 2019 Nonlinear Dyn. 97 1721 [74] Cheng J and Zeng Z T 2018 Acta Math. Sin.-English Ser. 34 1578 [75] Liu D and Sun W 2018 Appl. Math. Lett. 84 63 [76] Hinton G and Salakhutdinov R 2006 Science 313 504 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|