Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100502    DOI: 10.1088/1674-1056/abea9a
GENERAL Prev   Next  

Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation

Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇)
School of Physics and Optoelectronic Engineering, Xiangtan University, Xiangtan 411105, China
Abstract  Conservative chaotic flows have better ergodicity, therefore researching dynamics and applications of conservative systems has become a hot topic. We introduce a constant-perturbation into a 5-dimensional (5D) conservative model. Consequently, the line equilibria of original model have been changed to non-equilibrium. Plentiful chaos phenomena such as coexisting conservative flows can be observed in this modified system. In addition, by increasing the magnitude of the disturbance, the conservative system can be transformed to a dissipative system. Then, the modified system is realized by an xc7z020clg400 field programmable gate array (FPGA) chip. The designed chaotic oscillator consumes fewer resources and has high iteration speed. Finally, a pseudo random number generator based on this novel digital oscillator is designed.
Keywords:  perturbation method      coexistence hidden chaotic sea      FPGA realization  
Received:  19 January 2021      Revised:  19 February 2021      Accepted manuscript online:  03 March 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62071411).
Corresponding Authors:  Yicheng Zeng     E-mail:  yichengz@xtu.edu.cn

Cite this article: 

Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇) Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation 2021 Chin. Phys. B 30 100502

[1] Wang X Y and Li Z M 2019 Opt. Laser Eng. 115 107
[2] Zhang S, Zheng J H, Wang X P et al. 2020 Nonlinear Dyn. 102 2821
[3] Wang N, Li C Q, Bao H et al. 2019 IEEE Trans. Circuits Sys. I 66 4767
[4] Cang S J, Li Y, Xue W et al. 2020 Nonlinear Dyn. 99 1699
[5] Dong E Z, Yuan M F, Du S Z et al. 2020 Appl. Math. Model. 73 40
[6] Wang N, Zhang G and Bao H 2019 Nonlinear Dyn. 99 3197
[7] Yuan F, Jin Y and Li Y X 2020 Chaos 30 053127
[8] Zhang S, Wang X P, Zeng Z G 2020 Chaos 30 053129
[9] Wang S C, Wang C H and Xu C 2020 Opt. Laser Eng. 128 105995
[10] Wei Z C 2011 Phys. Lett. A 376 102
[11] Pham V T, Jafari S, Kapitaniak T et al. 2017 Int. J. Bifurcation Chaos 27 1750053
[12] Wang L, Zhang, S, Zeng Y C et al. 2018 Electron. Lett. 54 808
[13] Wu A G, Cang S J, Zhang R Y et al. 2018 Complexity 2018 9430637
[14] Ye X L, Wang X Y, Gao S et al. 2020 Opt. Laser Eng. 127 105905
[15] Bao H, Hua Z Y, Wang N et al. 2021 IEEE Trans. Ind. Informat. 17 1132
[16] Li H Z, Hua Z Y, Bao H et al. 2020 IEEE Trans. Ind. Electron. 68 9931
[17] Zhang X, Li C B, Chen Y D et al. 2019 Chaos Solitons Fract. 139 110000
[18] Tlelocuautle E, Rangelmagdaleno J D J, Panoazucena A D et al. 2020 Commun. Nonlinear Sci. Numer. Simulat. 27 66
[19] Rajagopal K, Munozpacheco J M, Pham V T et al. 2020 Eur. Phys. J. Spec. Top. 227 811
[20] Jin Q S, Min F H and Li C B 2019 Chin. J. Phys. 62 342
[21] Wang F Q, Wang R M, Iu H H C, Liu C X et al. 2019 IEEE Trans. Circuits Sys. II 66 2062
[22] Dong E Z, Wang Z, Yu X et al. 2018 Chin. Phys. B 27 010503
[23] Tolba M F, AbdelAty A M, Soliman N S et al. 2017 AEU-Inter. J. Electron. Commun. 78 162
[24] Rajagopal K, Akgul A, Jafari S et al. 2017 Chaos Solitons Fract. 103 476
[25] Tuna M, Karthikeyan A, Rajagopal K et al. 2019 AEU-Inter. J. Electron. Commun. 112 152941
[26] Baris K, Gülten A and Frasca M 2019 Chaos Solitons Fract. 119 143
[27] Ismail K and Özcerit A T 2017 Comput. Electr. Eng. 58 203
[28] Rezk A A, Madian A H, Radwan A G et al. 2019 AEU-Inter. J. Electron. Commun. 98 174
[1] Generating multi-layer nested chaotic attractor and its FPGA implementation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), Mengjiao Wang(王梦蛟), and Zhijun Li(李志军). Chin. Phys. B, 2021, 30(6): 060509.
[2] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[3] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
[4] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[5] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
[6] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[7] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[8] Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model
Du Zeng-Ji (杜增吉), Lin Wan-Tao (林万涛), Mo Jia-Qi (莫嘉琪 ). Chin. Phys. B, 2012, 21(9): 090201.
[9] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe(额尔敦布和) and Temuerchaolu(特木尔朝鲁) . Chin. Phys. B, 2012, 21(3): 035201.
[10] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin (袁琳), Zhao Yun-Hui (赵云辉), Xu Jun (徐军), Zhou Ben-Hu (周本胡), Hai Wen-Hua (海文华). Chin. Phys. B, 2012, 21(10): 103103.
[11] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin (唐文林), Tian Gui-Hua (田贵花). Chin. Phys. B, 2011, 20(5): 050301.
[12] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin(唐文林) and Tian Gui-Hua(田贵花). Chin. Phys. B, 2011, 20(1): 010304.
[13] Modified KdV equation for solitary Rossby waves with $\beta$ effect in barotropic fluids
Song Jian(宋健) and Yang Lian-Gui(杨联贵). Chin. Phys. B, 2009, 18(7): 2873-2877.
[14] The quantum pressure correction to the excitation spectrum of the trapped superfluid Fermi gases in a BEC-BCS crossover
Dong Hang(董行) and Ma Yong-Li(马永利). Chin. Phys. B, 2009, 18(2): 715-725.
[15] Direct perturbation method for perturbed complex Burgers equation
Cheng Xue-Ping(程雪苹), Lin Ji(林机), and Yao Jian-Ming(姚建明). Chin. Phys. B, 2009, 18(2): 391-394.
No Suggested Reading articles found!