Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104102    DOI: 10.1088/1674-1056/abf110
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism

Xinmi Yang(杨歆汨)1,2,†, Changrong Liu(刘昌荣)1, Bo Hou(侯波)3, and Xiaoyang Zhou(周小阳)2
1 School of Electronics and Information Engineering, Soochow University, Suzhou 215006, China;
2 State Key Laboratory of Millimeter Waves, Nanjing 210096, China;
3 School of Physical Science and Technology&Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
Abstract  A scheme of combing wave absorption and phase cancellation mechanisms for widening radar cross section (RCS) reduction band is proposed. An absorptive coding metasurface implementing this scheme is derived from traditional circuit analog absorber (CAA) composed of resistive ring elements which characterize dual resonances behavior. It is constructed by replacing some of the CAA elements by another kind of resistive ring elements which is singly resonant in between the original two resonant bands and has reflection phase opposite to that of the original elements at resonance. Hence the developed metasurface achieves an improved low-RCS band over which the lower and higher sub-bands are mainly contributed by wave absorption mainly while the middle sub-band is formed by joint effect of wave absorption and anti-phase cancellation mechanisms. The polarization-independent wideband RCS reduction property of the metasurface is validated by full-wave simulation results of a preliminary and an advanced design examples which employ the same element configuration but different element layout schemes as partitioned distribution and random coding. The advanced design also exhibits broadband bistatic low-RCS property and keeps a stable specular RCS reduction performance with regard to incident elevation angle up to 35°. The advanced design is fabricated and the experimental results of the sample agrees qualitatively well with their simulated counterparts. The measured figure of merit (i.e., low-RCS bandwidth ratio versus electrical thickness) of the sample is 40.572, which is superior to or comparable with those for most of other existing metasurface with compound RCS reduction mechanism. The proposed compound metasurface technique also features simple structure, light weight, low cost and easy fabrication compared with other techniques. This makes it promising in applications such as radar stealth and electromagnetic compatibility.
Keywords:  radar cross section (RCS) reduction      coding metasurface      wave absorption      anti-phase cancellation  
Received:  07 January 2021      Revised:  18 March 2021      Accepted manuscript online:  23 March 2021
PACS:  41.20.-q (Applied classical electromagnetism)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871280, 61372012, and 61671315).
Corresponding Authors:  Xinmi Yang     E-mail:  yangxinmi@suda.edu.cn

Cite this article: 

Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳) Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism 2021 Chin. Phys. B 30 104102

[1] Munk B A, Munk P and Pryor J 2007 IEEE Trans. Antennas Propag. 55 186
[2] Kazemzadeh A 2011 IEEE Trans. Antennas Propag. 59 135
[3] Shang Y P, Shen Z X and Xiao S Q 2013 IEEE Trans. Antennas Propag. 61 6022
[4] Deng T W, Li Z W and Chen Z N 2017 IEEE Trans. Antennas Propag. 65 5886
[5] Chen J L, Shang Y P and Liao C 2018 IEEE Antennas Wireless Propag. Lett. 17 591
[6] Cheng Y F, Ding X, Peng L, Feng J and Liao C 2020 IEEE Trans. Antennas Propag. 68 1411
[7] Engheta N IEEE Antennas Propagation Societ Int. Symp., June 16-21, 2002 San Antonio, TX, USA, p. 392
[8] Luukkonen O, Costa F, Simovski C R, Monorchio A and Tretyakov S A 2009 IEEE Trans. Antennas Propag. 57 3119
[9] Costa F, Monorchio A and Manara G 2010 IEEE Trans. Antennas Propag. 58 1551
[10] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[11] Campbell S D and Ziolkowski R W 2013 IEEE Trans. Antennas Propag. 61 1191
[12] Ye D X, Wang Z Y, Xu K W, Li H, Huangfu J T, Wang Z and Ran L X 2013 Phys. Rev. Lett. 111 187402
[13] Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230
[14] Sun S L, He Q, Xiao S Y, Xu Q, Li X and Zhou L 2012 Nat. Mater. 11 426
[15] Li Y F, Zhang J Q, Qu S B, Wang J F, Chen H Y, Xu Z and Zhang A X 2014 Appl. Phys. Lett. 104 221110
[16] Wu C J, Cheng Y Z, Wang W Y, He B and Gong R Z 2015 Acta Phys. Sin. 64 164102 (in Chinese)
[17] Doumanis E, Goussetis G, Papageorgiou G, Fusco V, Cahill R and Linton D 2013 IEEE Trans. Antennas Propagat. 61 232
[18] Davenport C J and Rigelsford J M 2014 IEEE Trans. Antennas Propagat. 62 4518
[19] Paquay M, Iriarte J-C, Ederra I, Gonzalo R and de Maagt P 2007 IEEE Trans. Antennas Propag. 55 3630
[20] Edalati A and Sarabandi K 2014 IEEE Trans. Antennas Propagat. 62 747
[21] Chen W, Balanis C A and Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636
[22] Liu X, Gao J, Xu L M, Cao X Y, Zhao Y and Li S J 2017 IEEE Antennas Wireless Propag. Lett. 16 724
[23] Huang C, Ji C, Wu X Y, Son J K and Luo X G. 2018 IEEE Trans. Antennas Propag. 66 1628
[24] Jia Y, Liu Y, Guo Y J, Li K and Gong S X 2016 IEEE Trans. Antennas Propagat. 64 179
[25] Zaker R and Sadeghzadeh A 2019 IEEE Antennas Wireless Propag. Lett. 18 1794
[26] Wang K, Zhao J, Cheng Q, Dong D S and Cui T J 2014 Sci. Rep. 4 5935
[27] Zhao J M, Sima B Y, Jia N, Wang C, Zhu B, Jiang T and Feng Y J 2016 Opt. Express 24 27849
[28] Su J X, Lu Y, Liu J Y, Yang Y Q, Li Z R and Song J M 2018 IEEE Trans. Antennas Propagat. 66 7091
[29] Yan X, Liang L J, Zhang Y T, Ding X and Yao J Q 2015 Acta Phys. Sin. 64 158101 (in Chinese)
[30] Genovesi S, Costa F and Monorchio A 2012 IEEE Trans. Antennas Propag. 60 2327
[31] Zhao J, Zhang C, Cheng Q, Yang J and Cui T J 2018 Appl. Phys. Lett. 112 073504
[32] Li F F, Lou Q, Chen P, Poo Y and Wu R X 2018 Opt. Express 26 34711
[33] Shen Y, Zhang J Q, Sui S, Jia Y X, Pang Y Q, Wang J F, Ma H and Qu S B 2018 J. Phys. D: Appl. Phys. 51 485301
[34] Shen Y, Zhang J Q, Shen L H, Sui S, Pang Y Q, Wang J F, Ma H and Qu S B 2018 Opt. Express 26 28363
[35] Zhuang Y Q, Wang G M, Liang J G and Zhang Q F 2017 IEEE Antennas Wireless Propag. Lett. 16 2606
[36] Ji C, Hung C, Zhang X, Yang J N, Song J K and Luo X G 2019 Opt. Express 27 23368
[37] Zhou L and Shen Z X 2020 IEEE Antennas Wireless Propag. Lett. 19 1201
[38] Zhuang Y Q, Wang G M, Zhang Q F and Zhou C 2018 IEEE Access 6 17306
[39] Huang J and Encinar J A 2007 Reflectarray Antennas (Hoboken, New Jersey: John Wiley & Sons, Inc.) pp. 68-72
[1] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[2] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[3] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[4] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
[5] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[6] Enhanced microwave absorption performance of MOF-derived hollow Zn-Co/C anchored on reduced graphene oxide
Yue Wang(王玥), Dawei He(何大伟), and Yongsheng Wang(王永生). Chin. Phys. B, 2021, 30(6): 067804.
[7] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[8] Efficient manipulation of terahertz waves by multi-bit coding metasurfaces and further applications of such metasurfaces
Yunping Qi(祁云平) Baohe Zhang(张宝和), Jinghui Ding(丁京徽), Ting Zhang(张婷), Xiangxian Wang(王向贤), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024211.
[9] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[10] Design of multi-band metasurface antenna array with low RCS performance
Si-Ming Wang(王思铭), Jun Gao(高军), Xiang-Yu Cao(曹祥玉), Yue-Jun Zheng(郑月军), Tong Li(李桐), Jun-Xiang Lan(兰俊祥), Liao-Ri Ji-Di(吉地辽日). Chin. Phys. B, 2018, 27(10): 104102.
[11] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[12] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[13] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[14] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen (付晨), He Da-Wei (何大伟), WangYong-Sheng (王永生), Fu Ming (富鸣), Geng Xin (耿欣), Zhuo Zu-Liang (卓祖亮). Chin. Phys. B, 2015, 24(8): 087801.
[15] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin (耿欣), He Da-Wei (何大伟), Wang Yong-Sheng (王永生), Zhao Wen (赵文), Zhou Yi-Kang (周亦康), Li Shu-Lei (李树磊). Chin. Phys. B, 2015, 24(2): 027803.
No Suggested Reading articles found!