Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096103    DOI: 10.1088/1674-1056/abf4bf
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials

Chunzhen Fan(范春珍)1,†, Peiwen Ren(任佩雯)1, Yuanlin Jia(贾渊琳)1, Shuangmei Zhu(朱双美)2, and Junqiao Wang(王俊俏)1
1 School of Physics and Microstructures, Zhengzhou University, Zhengzhou 450001, China;
2 College of Science, Henan University of Engineering, Zhengzhou 450001, China
Abstract  Based on Dirac semimetal metamaterials, the tunable plasmon induced transparency (PIT) is investigated elaborately in this work. The designed unit cell consists of a strip and a square bracket, which is periodically aligned on the dielectric substrate. Our numerical results illustrate that a pronounced transparency window exists due to near field coupling between two bright modes, which can be dynamically tuned with Fermi energy. Namely, the transparency window demonstrates a distinct blue shift with a larger Fermi energy. Moreover, an on-to-off switch of the PIT transparency window is realized with different polarization angles. In addition, the accompanied slow light property is examined with the calculation of phase and group delay. Finally, a small variation of the refractive index of the substrate can induce a clear movement of the PIT transparency window which delivers a guidance in the application of optical sensing. Thus, this work provides us a new strategy to design compact and adjustable PIT devices and has potential applications in highly tunable optical switchers, sensors, and slow light devices.
Keywords:  plasmon-induced transparency      Dirac semimetal metamaterials      optical switch      slow light  
Received:  20 January 2021      Revised:  30 March 2021      Accepted manuscript online:  05 April 2021
PACS:  61.48.Gh (Structure of graphene)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the Natural Science Foundation of Henan Provincial Educational Committee, China (Grant No. 21A140026).
Corresponding Authors:  Chunzhen Fan     E-mail:  chunzhen@zzu.edu.cn

Cite this article: 

Chunzhen Fan(范春珍), Peiwen Ren(任佩雯), Yuanlin Jia(贾渊琳), Shuangmei Zhu(朱双美), and Junqiao Wang(王俊俏) Highly tunable plasmon-induced transparency with Dirac semimetal metamaterials 2021 Chin. Phys. B 30 096103

[1] Liu C X, Liu P G, Yang C, Lin Y and Liu H Q 2019 Carbon 142 354
[2] Fu G L, Zhai X, Li H J, Xia S X and Wang L L 2017 J. Opt. 19 015001
[3] Wang J Q, Yuan B H, Fan C Z, He J N, Ding P, Xue Q Z and Liang E J 2013 Opt. Express 21 25159
[4] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[5] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[6] Zhao X, Yuan C, Lv W, Xu S and Yao J 2016 J. Mod. Opt. 63 200
[7] He J N, Wang J Q, Ding P, Fan C Z, Arnaut L R and Liang E J 2015 Plasmonics 10 1115
[8] Liao C L, Fu G L, Xia S X, Li H J, Zhai X and Wang L L 2017 J. Mod. Opt. 65 268
[9] Ling Y H, Huang L R, Hong W, Liu T J, Luan J, Liu W B, Lai J J and Li H P 2018 Nanoscale 10 19517
[10] Dong Z G, Liu H, Cao J X, Li T, Wang S M, Zhu S N and Zhang X 2010 Appl. Phys. Lett. 97 114101
[11] Chen J X, Wang P, Chen C C, Lu Y H, Ming H and Zhan Q W 2011 Opt. Express 19 5970
[12] Su H, Wang H, Zhao H, Xue T Y and Zhang J W 2017 Sci. Rep. 7 17378
[13] Yang Y M, Kravchenko I I, Briggs D P and Valentine J 2014 Nat. Commun. 5 5753
[14] Manjappa Z M, Chiam S Y, Cong L Q, Bettiol A A, Zhang W and Singh R J 2015 Appl. Phys. Lett. 106 181101
[15] Jia W, Ren P W, Tian Y C and Fan C Z 2019 Chin. Phys. B 28 026102
[16] Xiao S Y, Wang T, Liu T T, Yan X C, Li Z and Xu C 2018 Carbon 126 271
[17] Tian Y C, Jia W, Ren P W and Fan C Z 2018 Chin. Phys. B 27 124205
[18] Chen J, Xu R Q, Mao P, Zhang Y T, Liu Y J, Tang C J, Liu J Q and Chen T 2015 Plasmonics 10 341
[19] Ren P W, Jia Y L, Jia W and Fan C Z 2019 J. Opt. 21 105101
[20] Tassin P, Zhang L, Zhao R K, Jain A, Koschny T and Soukoulis C M 2012 Phys. Rev. Lett. 109 187401
[21] Zhu L, Meng F Y, Dong L, Wu Q, Che B J, Gao J, Fu J H, Zhang K and Yang G H 2015 J. Appl. Phys. 117 17D146
[22] Chen H, Xiong L, Hu F R and Xiang Y J 2021 Plasmonics 4 1
[23] Hu B J, Huang M, Li P and Yang J J 2021 Acta Phys. Sin. 70 044201 (in Chinese)
[24] Jia Y L, Ren P W, Wang J Q, Fan C Z and Liang E J 2020 ES Energy Environ. 7 4
[25] Fan C Z, Ren P W, Jia W, Jia Y L and Wang J Q 2019 Superlattice Microst. 136 106295
[26] Wang T L, Zhang Y P, Zhang H Y and Cao M Y 2019 Opt. Mater. Express 10 369
[27] Wang T L, Zhang H Y, Zhang Y, Zhang Y P and Cao M Y 2020 Opt. Express 28 17434
[28] Kotov O V and Lozovik Y E 2016 Phys. Rev. B 93 235417
[29] Chen H, Zhang H Y, Liu M D, Zhao Y K, Liu S D and Zhang Y P 2018 Opt. Commun. 423 57
[30] Neupane M, Xu S Y, Sankar R, Alidoust N, Bian G, Liu C, Belopolski I, Chang T R, Jeng H T, Lin H, Bansil A, Chou F C and Hasan M Z 2014 Nat. Commun. 5 3786
[31] Kang W J, Gao Q G, Dai L L, Zhang Y L, Zhang H Y and Zhang Y P 2020 Results Phys. 19 103688
[32] Liu P F, Zhou L J, Tretiakd S and Wu L M 2017 J. Mater. Chem. C 5 9181
[33] Wang Q S, Li C Z, Ge S F, Li J G, Lu W, Lai J W, Liu X F, Ma J C, Yu D P, Liao Z M and Sun D 2016 Nano Lett. 17 834
[34] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2014 Nat. Mater. 14 280
[35] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[36] Chen H, Zhang H Y, Zhao Y K, Liu S D, Cao M Y and Zhang Y P 2018 Opt. Laser Technol. 104 210
[37] Wang T L, Cao M Y, Zhang Y P and Zhang H Y 2019 Opt. Mater. Express 9 1562
[38] Liu Y L, Du Y N, Liu W Q, Shen S M, Tan Q L, Xiong J J and Zhang W D 2019 Plasmonics 14 1717
[39] Madhab N, Xu S Y, Sankar R, Nasser A, Bian G, Liu C, Ilya B, Chang T R, Jeng H T, Lin H, Arun B, Chou F C and Hasan M Z 2014 Nat. Commun. 5 3786
[40] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[41] Wang Z J, Weng H M, Wu Q S, Dai X and Fang Z 2013 Phys. Rev. B 88 125427
[42] Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E N and Zhang G Y 2010 Adv. Mater. 22 4014
[43] Carlos C, Daniel V, Alexa M W, Andrea S C, Mollie A T, Joanna K, Nathan C G and Adam B B 2020 Nat. Commun. 11 1244
[44] Murata Y, Calzolari A and Heun S 2018 J. Phys. Chem. C 122 11591
[45] Wang J Q, Zhang J, Fan C Z, Mu K J, Liang E J and Ding P 2017 Opt. Commun. 383 36
[46] He J N, Wang J Q, Ding P, Fan C Z and Liang E J 2015 J. Opt. 17 055002
[47] Jia W, Ren P W, Jia Y L and Fan C Z 2019 J. Phys. Chem. C 123 18560
[48] Fan C Z, Jia Y L, Ren P W and Jia W 2021 J. Phys. D: Appl. Phys. 54 035107
[49] Wang J Q, Fan C Z, He J N, Ding, P, Liang E J and Xue Q Z 2013 Opt. Express 21 2236
[50] He J N, Ding P, Wang J Q, Fan C Z and Liang E J 2015 J. Mod. Opt. 62 1241
[51] Liang X, Sperling B A, Calizo I, Cheng G, Hacker C A, Zhang Q, Obeng Y, Yan K, Peng H, Li Q, Zhu X, Yuan H, Walker A R, Liu Z, Peng L M and Richter C A 2011 ACS Nano 5 9144
[52] Li X S, Zhu Y W, Cai W W, Borysiak M, Han B Y, Chen D, Richard D P, Colombo L and Rodney S R 2009 Nano Lett. 9 4359
[53] Guo S, Niu C H, Liang L, Chai K, Jia Y Q, Zhao F Y, Li Y, Zou B S and Liu R B 2016 Sci. Rep. 6 1
[54] Kedzierski M A, Brignoli R, Quine K T and Brown J S 2017 Int. J. Refrig. 74 3
[1] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[2] Observation of V-type electromagnetically induced transparency and optical switch in cold Cs atoms by using nanofiber optical lattice
Xiateng Qin(秦夏腾), Yuan Jiang(蒋源), Weixin Ma(马伟鑫), Zhonghua Ji(姬中华),Wenxin Peng(彭文鑫), and Yanting Zhao(赵延霆). Chin. Phys. B, 2022, 31(6): 064216.
[3] Tunable optomechanically induced transparency and fast-slow light in a loop-coupled optomechanical system
Qinghong Liao(廖庆洪), Xiaoqian Wang(王晓倩), Gaoqian He(何高倩), and Liangtao Zhou(周良涛). Chin. Phys. B, 2021, 30(9): 094205.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[6] Compound-induced transparency in three-cavity coupled structure
Hao-Ye Qin(秦昊烨), Yi-Heng Yin(尹贻恒), and Ming Ding(丁铭). Chin. Phys. B, 2020, 29(12): 124208.
[7] Dynamically tunable optical properties in graphene-based plasmon-induced transparency metamaterials
Wei Jia(贾微), Pei-Wen Ren(任佩雯), Yu-Chen Tian(田雨宸), Chun-Zhen Fan(范春珍). Chin. Phys. B, 2019, 28(2): 026102.
[8] All-optical switch and transistor based on coherent light-controlled single two-level atom coupling with two nanowires
Xin-Qin Zhang(张新琴), Xiu-Wen Xia(夏秀文), Jing-Ping Xu(许静平), Mu-Tian Cheng(程木田), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2019, 28(11): 114207.
[9] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[10] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[11] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
[12] Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials
Yu-Chen Tian(田雨宸), Wei Jia(贾微), Pei-Wen Ren(任佩雯), Chun-Zhen Fan(范春珍). Chin. Phys. B, 2018, 27(12): 124205.
[13] Silicon nanophotonics for on-chip light manipulation
Jingshu Guo(郭敬书), Daoxin Dai(戴道锌). Chin. Phys. B, 2018, 27(10): 104208.
[14] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[15] Electrically controlled optical switch in the hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Hong-Yang Ma(马鸿洋), Shu-Mei Wang(王淑梅), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2017, 26(12): 128502.
No Suggested Reading articles found!