Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065207    DOI: 10.1088/1674-1056/ab820c
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter

Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方)
Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China
Abstract  In the extreme conditions of high altitude, low temperature, low pressure, and high speed, the aircraft engine is prone to flameout and difficult to start secondary ignition, which makes reliable ignition of combustion chamber at high altitude become a worldwide problem. To solve this problem, a kind of multichannel plasma igniter with round cavity is proposed in this paper, the three-channel and five-channel igniters are compared with the traditional ones. The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test, and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber. The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter, which can increase the conversion efficiency of electric energy from 26% to 43%, and the conversion efficiency of thermal energy from 25% to 73%. The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area, which both increase with the increase of height. At the same height, the inlet flow helps to increase the penetration depth of the spark. The recessed multichannel plasma igniter can widen the lean ignition boundary, and the maximum enrichment percentage of lean ignition boundary can reach 31%.
Keywords:  high altitude extreme condition      recessed multichannel plasma igniter      discharge energy      lean ignition boundary  
Received:  21 January 2020      Revised:  06 March 2020      Accepted manuscript online: 
PACS:  52.80.Mg (Arcs; sparks; lightning; atmospheric electricity)  
  52.25.Jm (Ionization of plasmas)  
  52.50.-b (Plasma production and heating)  
  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91641204).
Corresponding Authors:  Hui-Min Song     E-mail:  min_cargi@sina.com

Cite this article: 

Bang-Huang Cai(蔡帮煌), Hui-Min Song(宋慧敏), Min Jia(贾敏), Yun Wu(吴云), Wei Cui(崔巍), Sheng-Fang Huang(黄胜方) Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter 2020 Chin. Phys. B 29 065207

[1] Pucher G and Allan W D 2004 ASME Turbo Expo., June 14-17, Vienna, Austria 53112
[2] Lin B X, Wu Y, Zhang Z B and Chen Z 2017 Combust. Flame 182 102
[3] Huang S F, Wu Y, Song H M, Zhu J J, Zhang Z B, Song X L and Li Y H 2018 Exp. Therm. Fluid Sci. 99 315
[4] Glassman 1996 Combustion, San Diego, USA, (Academic)
[5] Chen Z and Ju Y 2007 Theory Model. 11 427
[6] Chen Z, Burke M P and Ju Y 2011 Proc. Combust. Institute. 33 1219
[7] He L 2000 Combust. Theory Modelling 4 159
[8] Chen Z, Burke M P and Ju Y 2009 Proc. Combust. Institute. 32 1253
[9] Roth J R 2001 Industrial plasma engineering: Applications to nonthermal plasma processing, Vol. 2 (Boca Raton: CRC Press)
[10] Meyer R, Mceldowney B and Chintala N 2003 AIAA. Reston, USA: AIAA
[11] Klimov A, Bityurin V and Kuznetsov A 2005 AIAA p. 599
[12] Klimov A, Bityurin V and Moralev I 2005 AIAA p. 3428
[13] Wolk B, DeFilippo A and Chen J Y 2013 Combust. Flame. 160 1225
[14] Kwonse K, Seokyeon I, Munseok C, Taejun Y, Dogyeong K and Dooseuk C 2019 J. Mech. Sci. Technol. 33 2459
[15] Jacobsen L S, Carter C D and Baurle R A 2003 Reston, USA: AIAA
[16] Mosbach T, Sadanandan R and Meier W 2010 ASME pp. 523-52
[17] Leonov S B, Isaenkov Y I, Yarantsev D A and Schneider M 2006 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, April 20-23, Canberra, Australia p. 8129
[18] Leonov S B, Isaenkov Y I, Firsov A A, Nothnagel S L, Gimelshein S F and Shneider M N 2010 Phys. Plasmas 17 053505
[19] Hnatiuc B, Hnatiuc E, Peller S and Chapelle J 2006 Czech. J. Phys. 56 851
[20] Briggs T, Alger T and Mangold B 2014 SAE Int. J. Engines 7 1802
[21] Wang W L, Song H M and Li J 2016 Chin. Phys. B 25 045203
[22] Zhang Z B, Wu Y, Jia M and Song H M 2017 Chin. Phys. B 26 065204
[23] Huang S F, Song H M, Wu Y and Jia M 2018 Chin. Phys. B 27 035203
[24] Maly R and Vogel M 1979 Symp. (Int.) Combustion 17 821
[25] Watson E A 1956 Lucas Report No. L5988, also Chart. Mech. Eng. 3 91
[1] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[2] Characteristics of DC arcs in a multi-arc generator and their application in the spheroidization of SiO2
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xingyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), and Yuedong Meng(孟月东). Chin. Phys. B, 2020, 29(12): 125201.
[3] Characteristics of non-thermal AC arcs in multi-arc generator
Qifu Lin(林启富), Yanjun Zhao(赵彦君), Wenxue Duan(段文学), Guohua Ni(倪国华), Xinyue Jin(靳兴月), Siyuan Sui(隋思源), Hongbing Xie(谢洪兵), Yuedong Meng(孟月东). Chin. Phys. B, 2019, 28(12): 125205.
[4] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
[5] Experimental investigation on electrical characteristics and ignition performance of multichannel plasma igniter
Sheng-Fang Huang(黄胜方), Hui-Min Song(宋慧敏), Yun Wu(吴云), Min Jia(贾敏), Di Jin(金迪), Zhi-Bo Zhang(张志波), Bing-Xuan Lin(林冰轩). Chin. Phys. B, 2018, 27(3): 035203.
[6] Characteristics of helium DC plasma jets at atmospheric pressure with multiple cathodes
Cheng Wang(王城), Zelong Zhang(张泽龙), Haichao Cui(崔海超), Weiluo Xia(夏维珞), Weidong Xia(夏维东). Chin. Phys. B, 2017, 26(8): 085207.
[7] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[8] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[9] Influence of air pressure on the performance of plasma synthetic jet actuator
Yang Li(李洋), Min Jia(贾敏), Yun Wu(吴云), Ying-hong Li(李应红), Hao-hua Zong(宗豪华), Hui-min Song(宋慧敏), Hua Liang(梁华). Chin. Phys. B, 2016, 25(9): 095205.
[10] Electrical and optical characteristics of the radio frequency surface dielectric barrier discharge plasma actuation
Wei-Long Wang(王蔚龙), Hui-Min Song(宋慧敏), Jun Li(李军), Min Jia(贾敏), Yun Wu(吴云), Di Jin(金迪). Chin. Phys. B, 2016, 25(4): 045203.
[11] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[12] Evolution of magnetically rotating arc into large area arc plasma
Wang Cheng (王城), Li Wan-Wan (李皖皖), Zhang Xiao-Ning (张晓宁), Zha Jun (査俊), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(6): 065206.
[13] Shockwave-boundary layer interaction control by plasma aerodynamic actuation:An experimental investigation
Sun Quan (孙权), Cui Wei (崔巍), Li Ying-Hong (李应红), Cheng Bang-Qin (程邦勤), Jin Di (金迪), Li Jun (李军). Chin. Phys. B, 2014, 23(7): 075210.
[14] Investigation on the shockwave induced by surface arc plasma in quiescent air
Jin Di (金迪), Li Ying-Hong (李应红), Jia Min (贾敏), Li Fan-Yu (李凡玉), Cui Wei (崔巍), Sun Quan (孙权), Zhang Bai-Ling (张百灵), Li Jun (李军). Chin. Phys. B, 2014, 23(3): 035201.
[15] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen(李雪辰), Niu Dong-Ying(牛东莹), Xu Long-Fei(许龙飞), Jia Peng-Ying(贾鹏英), and Chang Yuan-Yuan(常媛媛) . Chin. Phys. B, 2012, 21(7): 075204.
No Suggested Reading articles found!