Abstract We develop a numerical scheme for solving the one-dimensional (1D) time-dependent Schrödinger equation (TDSE), and use it to study the strong-field photoionization of the atomic hydrogen. The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional (3D) TDSE. For XUV pulses, our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes. For pulses of 400 nm or longer wavelengths, we distinguish the multiphoton and tunneling regimes. Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed. The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.
(Ultrafast processes; optical pulse generation and pulse compression)
Fund: Project supported by the National Natural Science Foundation of China (Gant Nos. 12074265, 11804233, and 11575118), the National Key Research and Development Project of China (Grant No. 2017YFF0106500), the Natural Science Foundation of Guangdong, China (Grant Nos. 2018A0303130311 and 2021A1515010082), and the Shenzhen Fundamental Research Program (Grant Nos. KQJSCX20180328093801773, JCYJ20180305124540632, and JCYJ20190808121405740).
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超) Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations 2021 Chin. Phys. B 30 083301
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys.81 163 [2] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys.87 765 [3] Ueda K, Sokell E, Schippers S, Aumayr F, Sadeghpour H, Burgdörfer J, Lemell C, Tong X M, Pfeifer T, Calegari F, Palacios A, Martin F, Corkum P, Sansone G, Gryzlova E V, Grum-Grzhimailo A N, Piancastelli M N, Weber P M, Steinle T, Amini K, Biegert J, Berrah N, Kukk E, Santra R, Müller A, Dowek D, Lucchese R R, McCurdy C W, Bolognesi P, Avaldi L, Jahnke T, Schöffler M S, Dörner R, Mairesse Y, Nahon L, Smirnova O, Schlathölter T, Campbell E E B, Rost J M, Meyer M and Tanaka K A 2019 J. Phys. B: At. Mol. Opt. Phys.52 171001 [4] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett.73 1227 [5] Zhang L 2014 Phys. Rev. Lett.112 193002 [6] Chen Z, Liu F and Wen H 2019 Chin. Phys. B28 123401 [7] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B4 595 [8] Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B27 73204 [9] Zuo R X, Song X H, Liu X W, Yang S D and Yang W F 2019 Chin. Phys. B28 94208 [10] Liu L, Zhao J, Yuan J M and Zhao Z X 2019 Chin. Phys. B28 114205 [11] Baghery M, Saalmann U and Rost J M 2017 Phys. Rev. Lett.118 143202 [12] Jiang W C and Burgdörfer J 2018 Opt. Express26 19921 [13] Wang N and Liu A 2019 Chin. Phys. B28 083403 [14] Jiang W C, Chen S G, Peng L Y and Burgdörfer J 2020 Phys. Rev. Lett.124 043203 [15] Xu Y and Bian X B 2020 Chin. Phys. B29 23202 [16] Brée C, Hofmann M, Demircan A, Morgner U, Kosareva O, Savel'ev A, Husakou A, Ivanov M and Babushkin I 2017 Phys. Rev. Lett.119 243202 [17] Xu L and Fu L 2019 Phys. Rev. Lett.122 253202 [18] Reed V C and Burnett K 1991 Phys. Rev. A43 6217 [19] Dörr M 2000 Opt. Express6 111 [20] Zhao J and Lein M 2013 Phys. Rev. Lett.111 043901 [21] de Aldana J V and Roso L 1999 Opt. Express5 144 [22] Kylstra N J, Worthington R A, Patel A, Knight P L, de Aldana J V and Roso L 2000 Phys. Rev. Lett.85 1835 [23] Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A38 3430 [24] Geltman S 2011 J. At. Mol. Phys.2011 573179 [25] Silaev A A, Ryabikin M Y and Vvedenskii N V 2010 Phys. Rev. A82 033416 [26] Majorosi S, Benedict M G and Czirják A 2018 Phys. Rev. A98 023401 [27] Gordon A, Santra R and Kärtner F X 2005 Phys. Rev. A72 063411 [28] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G and Yang Y J 2014 Chin. Phys. B23 053202 [29] Dziubak T and Matulewski J 2010 Eur. Phys. J. D59 321 [30] Rae S C, Chen X and Burnett K 1994 Phys. Rev. A50 1946 [31] Chen Y J, Liu J and Hu B 2009 Phys. Rev. A79 033405 [32] Yu H, Zuo T and Bandrauk A D 1998 J. Phys. B: At. Mol. Opt. Phys.31 1533 [33] Liu C, Nakajima T, Sakka T and Ohgaki H 2008 Phys. Rev. A77 043411 [34] Loudon R 1959 Am. J. Phys.27 649 [35] Schwengelbeck U and Faisal F H M 1994 Phys. Rev. A50 632 [36] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A74 031405 [37] Wang S, Jiang W C, Tian X Q and Sun H B 2020 Phys. Rev. A101 053417 [38] Jiang W C, Tong X M, Pazourek R, Nagele S and Burgdörfer J 2020 Phys. Rev. A101 053435 [39] Rescigno T N and McCurdy C W 2000 Phys. Rev. A62 032706 [40] Rayson M J 2007 Phys. Rev. E76 026704 [41] Schneider B I and Collins L A 2005 J. Non-Cryst. Solids351 1551 [42] Jiang W C and Tian X Q 2017 Opt. Express25 26832 [43] Demekhin P V and Cederbaum L S 2012 Phys. Rev. Lett.108 253001 [44] Wang M X, Liang H, Xiao X R, Chen S G, Jiang W C and Peng L Y 2018 Phys. Rev. A98 023412 [45] Keldysh L V 1965 Sov. Phys. JETP20 1307
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.