|
|
Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations |
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超)† |
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract We develop a numerical scheme for solving the one-dimensional (1D) time-dependent Schrödinger equation (TDSE), and use it to study the strong-field photoionization of the atomic hydrogen. The photoelectron energy spectra obtained for pulses ranging from XUV to near infrared are compared in detail to the spectra calculated with our well-developed code for accurately solving the three-dimensional (3D) TDSE. For XUV pulses, our discussions cover intensities at which the ionization is in the perturbative and nonperturbative regimes. For pulses of 400 nm or longer wavelengths, we distinguish the multiphoton and tunneling regimes. Similarities and discrepancies between the 1D and 3D calculations in each regime are discussed. The observed discrepancies mainly originate from the differences in the transition matrix elements and the energy level structures created in the 1D and 3D calculations.
|
Received: 26 November 2020
Revised: 08 February 2021
Accepted manuscript online: 01 March 2021
|
PACS:
|
33.20.Xx
|
(Spectra induced by strong-field or attosecond laser irradiation)
|
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Gant Nos. 12074265, 11804233, and 11575118), the National Key Research and Development Project of China (Grant No. 2017YFF0106500), the Natural Science Foundation of Guangdong, China (Grant Nos. 2018A0303130311 and 2021A1515010082), and the Shenzhen Fundamental Research Program (Grant Nos. KQJSCX20180328093801773, JCYJ20180305124540632, and JCYJ20190808121405740). |
Corresponding Authors:
Wei-Chao Jiang
E-mail: jiang.wei.chao@szu.edu.cn
|
Cite this article:
Shun Wang(王顺), Shahab Ullah Khan, Xiao-Qing Tian(田晓庆), Hui-Bin Sun(孙慧斌), and Wei-Chao Jiang(姜维超) Comparative study of photoionization of atomic hydrogen by solving the one- and three-dimensional time-dependent Schrödinger equations 2021 Chin. Phys. B 30 083301
|
[1] Krausz F and Ivanov M 2009 Rev. Mod. Phys. 81 163 [2] Pazourek R, Nagele S and Burgdörfer J 2015 Rev. Mod. Phys. 87 765 [3] Ueda K, Sokell E, Schippers S, Aumayr F, Sadeghpour H, Burgdörfer J, Lemell C, Tong X M, Pfeifer T, Calegari F, Palacios A, Martin F, Corkum P, Sansone G, Gryzlova E V, Grum-Grzhimailo A N, Piancastelli M N, Weber P M, Steinle T, Amini K, Biegert J, Berrah N, Kukk E, Santra R, Müller A, Dowek D, Lucchese R R, McCurdy C W, Bolognesi P, Avaldi L, Jahnke T, Schöffler M S, Dörner R, Mairesse Y, Nahon L, Smirnova O, Schlathölter T, Campbell E E B, Rost J M, Meyer M and Tanaka K A 2019 J. Phys. B: At. Mol. Opt. Phys. 52 171001 [4] Walker B, Sheehy B, DiMauro L F, Agostini P, Schafer K J and Kulander K C 1994 Phys. Rev. Lett. 73 1227 [5] Zhang L 2014 Phys. Rev. Lett. 112 193002 [6] Chen Z, Liu F and Wen H 2019 Chin. Phys. B 28 123401 [7] McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K and Rhodes C K 1987 J. Opt. Soc. Am. B 4 595 [8] Huang Y Y, Lai X Y and Liu X J 2018 Chin. Phys. B 27 73204 [9] Zuo R X, Song X H, Liu X W, Yang S D and Yang W F 2019 Chin. Phys. B 28 94208 [10] Liu L, Zhao J, Yuan J M and Zhao Z X 2019 Chin. Phys. B 28 114205 [11] Baghery M, Saalmann U and Rost J M 2017 Phys. Rev. Lett. 118 143202 [12] Jiang W C and Burgdörfer J 2018 Opt. Express 26 19921 [13] Wang N and Liu A 2019 Chin. Phys. B 28 083403 [14] Jiang W C, Chen S G, Peng L Y and Burgdörfer J 2020 Phys. Rev. Lett. 124 043203 [15] Xu Y and Bian X B 2020 Chin. Phys. B 29 23202 [16] Brée C, Hofmann M, Demircan A, Morgner U, Kosareva O, Savel'ev A, Husakou A, Ivanov M and Babushkin I 2017 Phys. Rev. Lett. 119 243202 [17] Xu L and Fu L 2019 Phys. Rev. Lett. 122 253202 [18] Reed V C and Burnett K 1991 Phys. Rev. A 43 6217 [19] Dörr M 2000 Opt. Express 6 111 [20] Zhao J and Lein M 2013 Phys. Rev. Lett. 111 043901 [21] de Aldana J V and Roso L 1999 Opt. Express 5 144 [22] Kylstra N J, Worthington R A, Patel A, Knight P L, de Aldana J V and Roso L 2000 Phys. Rev. Lett. 85 1835 [23] Javanainen J, Eberly J H and Su Q 1988 Phys. Rev. A 38 3430 [24] Geltman S 2011 J. At. Mol. Phys. 2011 573179 [25] Silaev A A, Ryabikin M Y and Vvedenskii N V 2010 Phys. Rev. A 82 033416 [26] Majorosi S, Benedict M G and Czirják A 2018 Phys. Rev. A 98 023401 [27] Gordon A, Santra R and Kärtner F X 2005 Phys. Rev. A 72 063411 [28] Tian Y Y, Li S Y, Wei S S, Guo F M, Zeng S L, Chen J G and Yang Y J 2014 Chin. Phys. B 23 053202 [29] Dziubak T and Matulewski J 2010 Eur. Phys. J. D 59 321 [30] Rae S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946 [31] Chen Y J, Liu J and Hu B 2009 Phys. Rev. A 79 033405 [32] Yu H, Zuo T and Bandrauk A D 1998 J. Phys. B: At. Mol. Opt. Phys. 31 1533 [33] Liu C, Nakajima T, Sakka T and Ohgaki H 2008 Phys. Rev. A 77 043411 [34] Loudon R 1959 Am. J. Phys. 27 649 [35] Schwengelbeck U and Faisal F H M 1994 Phys. Rev. A 50 632 [36] Tong X M, Hino K and Toshima N 2006 Phys. Rev. A 74 031405 [37] Wang S, Jiang W C, Tian X Q and Sun H B 2020 Phys. Rev. A 101 053417 [38] Jiang W C, Tong X M, Pazourek R, Nagele S and Burgdörfer J 2020 Phys. Rev. A 101 053435 [39] Rescigno T N and McCurdy C W 2000 Phys. Rev. A 62 032706 [40] Rayson M J 2007 Phys. Rev. E 76 026704 [41] Schneider B I and Collins L A 2005 J. Non-Cryst. Solids 351 1551 [42] Jiang W C and Tian X Q 2017 Opt. Express 25 26832 [43] Demekhin P V and Cederbaum L S 2012 Phys. Rev. Lett. 108 253001 [44] Wang M X, Liang H, Xiao X R, Chen S G, Jiang W C and Peng L Y 2018 Phys. Rev. A 98 023412 [45] Keldysh L V 1965 Sov. Phys. JETP 20 1307 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|