Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(6): 060702    DOI: 10.1088/1674-1056/abeeee
GENERAL Prev   Next  

Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes

Si-Yuan Hao(郝思源)1,2,3, Xiao-Ping Lou(娄小平)1,2,3,†, Jing Zhu(祝静)1,2,3, Guang-Wei Chen(陈广伟)1,2,3, and Hui-Yu Li(李慧宇)1,2,3
1 Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing 100192, China;
2 Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China;
3 Beijing Key Laboratory of Optoelectronic Measurement Technology, Beijing Information Science & Technology University, Beijing 100192, China
Abstract  The shielding property of cylinder with circular, square, and equilateral triangle holes was investigated by finite element analysis (FEA). The hole area (Shole) plays an important role in magnetic circuit on the surface of cylinder. When Shole is less than the critical area (SH), cylinder with three shapes of holes obtained the same remanent magnetization inside, indicating that the shielding property is unaffected by the shape of the hole. Hence, high-permeability material is the major path of the magnetic field. On the condition of Shole > SH, the sequence of the shielding property is equilateral triangle > square > circular, resulting from magnetoresistance of leakage flux in air dielectric. Besides, the anisotropy of shielding property caused by hole structural differences of the cylinder is evaluated. We find that a good shielding effectiveness is gained in the radial direction, compared with the axis direction. This research focuses on providing a theoretical support for the design of magnetic shield and improvement on the magnetic shielding ability.
Keywords:  SERF atomic magnetometer      magnetic shielding      holes      finite element analysis (FEA)  
Received:  18 December 2020      Revised:  18 February 2021      Accepted manuscript online:  16 March 2021
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the Key Projects of the National Natural Science Foundation of China (Grant No. 51535002) and the Programme of Introducing Talents of Discipline to Universities (Grant No. D17021).
Corresponding Authors:  Xiao-Ping Lou     E-mail:  louxiaoping@bistu.edu.cn

Cite this article: 

Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇) Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes 2021 Chin. Phys. B 30 060702

[1] Colombo A P, Carter T R, Borna A, Jau Y Y, Johnson C N, Dagel A L and Schwindt D P 2016 Opt. Express 24 15403
[2] Patton B, Zhivun E, Hovde D C and Budker D 2014 Phys. Rev. Lett. 113 013001
[3] Li J J, Du P C, Fu J Q, Wang X T, Zhou Q and Wang R Q 2019 Chin. Phys. B 28 040703
[4] Li J D, Quan W, Zhou B Q, Wang Z and Fang J C 2018 IEEE Sens. J. 18 8198
[5] Dang H B, Maloof A C and Romalis M V 2010 Appl. Phys. Lett. 97 151110
[6] Wyllie R, Kauer M, Smetana G S, Wakai R T and Walker T G 2012 Phys. Med. Bio. 57 2619
[7] Canova A, Freschi F, Giaccone L and Repetto M 2017 IEEE Trans. Magn. 54 1
[8] Kominis I, Kornack T W, Allred J C and Romalis M V 2003 Nature 422 596
[9] Bai W X, Li T L, Guo A Q, Cheng R Q and Jiao C Q 2019 Acta Phys. Sin. 68 104101 (in Chinese)
[10] Fu J Q, Du P C, Zhou Q and Wang R Q 2015 Chin. Phys. B 25 010302
[11] Ma D Y, Ding M, Lu J X, Yao H, Zhao J P, Yang K, Cai J S and Han B C 2019 IEEE Sens. J. 19 6085
[12] Xuan L, Dong H and Zhuo C 2013 The 8th Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems, April 7-10, 2013, Suzhou, China, p. 649
[13] Kornack T W, Smullin S J, Lee S K and Romalis M V 2007 Appl. Phys. Lett. 90 223501
[14] Gubser D U, Wolf S A and Cox J E 1979 Rev. Sci. Instrum. 50 751
[15] Li J D, Han B C, Liu F, Xing L and Liu G 2019 IEEE Sens. J. 19 2916
[16] Donley E A, Hodby E, Hollberg L and Kitching J 2007 Rev. Sci. Instrum. 78 083102
[17] Sumner T J, Pendlebury J M and Smith K F 1987 J. Appl. Phys. 20 1095
[18] Paperno E, Romalis M V and Noam Y 2004 IEEE Trans. Magn. 40 2170
[19] Wu J C, Li L, Harrison J C and Candler R N 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), June 18-22, 2017, Kaohsiung, Taiwan, China p. 838
[20] Donley E A, Hodby E, Hollberg L and Kitching J 2007 Rev. Sci. Instrum. 78 083102
[21] Li J D, Quan W, Han B C, Wang Z and Fang J C 2019 IEEE Sens. J. 20 1793
[22] Moric I, Laurent P, Chatard P, Graeve D C M, Thomin S, Christophe V and Grosjean O 2014 Acta Astronaut. 102 287
[23] Li Q M, Zhang J H, Huang Z J, Zeng X J and Sun W M 2012 Proceedings of 2012$ International Conference on Measurement, Information and Control, May 18-20, 2012, Harbin, China, p. 67
[24] Popov G M 2003 Meas Technol. 46 377
[1] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[4] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[5] Numerical study of optical trapping properties of nanoparticle on metallic film with periodic structure
Cheng-Xian Ge(葛城显), Zhen-Sen Wu(吴振森), Jing Bai(白靖), Lei Gong(巩蕾). Chin. Phys. B, 2019, 28(2): 024203.
[6] Lipoprotein in cholesterol transport: Highlights and recent insights into its structural basis and functional mechanism
Shu-Yu Chen(陈淑玉), Na Li(李娜), Tao-Li Jin(金桃丽), Lu Gou(缑璐), Dong-Xiao Hao(郝东晓), Zhi-Qi Tian(田芷淇), Sheng-Li Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028702.
[7] A transparent electromagnetic-shielding film based on one-dimensional metal-dielectric periodic structures
Ya-li Zhao(赵亚丽), Fu-hua Ma(马富花), Xu-feng Li(李旭峰), Jiang-jiang Ma(马江将), Kun Jia(贾琨), Xue-hong Wei(魏学红). Chin. Phys. B, 2018, 27(2): 027302.
[8] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[9] Fullerene solar cells with cholesteric liquid crystal doping
Lulu Jiang(姜璐璐), Yurong Jiang(蒋玉荣), Congcong Zhang(张丛丛), Zezhang Chen(陈泽章), Ruiping Qin(秦瑞平), Heng Ma(马恒). Chin. Phys. B, 2016, 25(9): 098401.
[10] Research progress of cholesteric liquid crystals with broadband reflection characteristics in application of intelligent optical modulation materials
Lan-Ying Zhang(张兰英), Yan-Zi Gao(高延子), Ping Song(宋平), Xiao-Juan Wu(武晓娟), Xiao Yuan(苑晓), Bao-Feng He(何宝凤), Xing-Wu Chen(陈兴武), Wang Hu(胡望), Ren-Wei Guo(郭仁炜), Hang-Jun Ding(丁杭军), Jiu-Mei Xiao(肖久梅), Huai Yang(杨槐). Chin. Phys. B, 2016, 25(9): 096101.
[11] Time gap for temporal cloak based on spectral hole burning in atomic medium
Abdul Jabar M S, Bakht Amin Bacha, Iftikhar Ahmad. Chin. Phys. B, 2016, 25(8): 084205.
[12] Reciprocity principle-based model for shielding effectiveness prediction of a rectangular cavity with a covered aperture
Jiao Chong-Qing (焦重庆), Li Yue-Yue (李月月). Chin. Phys. B, 2015, 24(10): 104101.
[13] Different charging behaviors between electrons and holes in Si nanocrystals embedded in SiNx matrix by the influence of near-interface oxide traps
Fang Zhong-Hui (方忠慧), Jiang Xiao-Fan (江小帆), Chen Kun-Ji (陈坤基), Wang Yue-Fei (王越飞), Li Wei (李伟), Xu Jun (徐骏). Chin. Phys. B, 2015, 24(1): 017305.
[14] Resonance suppression and electromagnetic shielding effectiveness improvement of an apertured rectangular cavity by using wall losses
Jiao Chong-Qing (焦重庆), Zhu Hong-Zhao (朱弘钊). Chin. Phys. B, 2013, 22(8): 084101.
[15] Vertical cavity surface emitting laser transverse mode and polarization control by elliptical holes photonic crystal
Cao Tian (曹田), Xu Chen (徐晨), Xie Yi-Yang (解意洋), Kan Qiang (阚强), Wei Si-Min (魏思民), Mao Ming-Ming (毛明明), Chen Hong-Da (陈弘达 ). Chin. Phys. B, 2013, 22(2): 024205.
No Suggested Reading articles found!