Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050501    DOI: 10.1088/1674-1056/abd468
GENERAL Prev   Next  

Dynamical robustness of networks based on betweenness against multi-node attack

Zi-Wei Yuan(袁紫薇)1,2, Chang-Chun Lv(吕长春)1,2, Shu-Bin Si(司书宾)1,2,†, and Dong-Li Duan(段东立)3
1 School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2 Key Laboratory of Industrial Engineering and Intelligent Manufacturing(Ministry of Industry and Information Technology), Xi'an 710072, China;
3 School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710311, China
Abstract  We explore the robustness of a network against failures of vertices or edges where a fraction $f$ of vertices is removed and an overload model based on betweenness is constructed. It is assumed that the load and capacity of vertex $i$ are correlated with its betweenness centrality $B_i$ as $B_i^\theta$ and $(1+\alpha) B_i^\theta$ ($\theta$ is the strength parameter, $\alpha$ is the tolerance parameter). We model the cascading failures following a local load preferential sharing rule. It is found that there exists a minimal $\alpha_{\rm c}$ when $\theta$ is between 0 and 1, and its theoretical analysis is given. The minimal $\alpha_{\rm c}$ characterizes the strongest robustness of a network against cascading failures triggered by removing a random fraction $f$ of vertices. It is realized that the minimal $\alpha_{\rm c}$ increases with the increase of the removal fraction $f$ or the decrease of average degree. In addition, we compare the robustness of networks whose overload models are characterized by degree and betweenness, and find that the networks based on betweenness have stronger robustness against the random removal of a fraction $f$ of vertices.
Keywords:  complex network      robustness      betweenness      critical threshold  
Received:  02 September 2020      Revised:  04 December 2020      Accepted manuscript online:  17 December 2020
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  64.60.aq (Networks)  
  89.75.-k (Complex systems)  
  89.75.Hc (Networks and genealogical trees)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 71771186, 71631001, and 72071153) and the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2020JM-486 and 2020JM-486).
Corresponding Authors:  Shu-Bin Si     E-mail:  sisb@nwpu.edu.cn

Cite this article: 

Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立) Dynamical robustness of networks based on betweenness against multi-node attack 2021 Chin. Phys. B 30 050501

[1] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabasi A L 2000 Nature 407 651
[2] Cohen R, Erez K, Benavraham D and Havlin S 2000 Phys. Rev. Lett. 85 4626
[3] Ebel H, Mielsch L and Bornholdt S 2002 Phys. Rev. E 66 035103
[4] Goh K, Oh E, Kahng B and Kim D 2003 Phys. Rev. E 67 017101
[5] Gross T, Dlima C J D and Blasius B 2006 Phys. Rev. Lett. 96 208701
[6] Wang J and Rong L 2009 Safety Sci. 47 1332
[7] Zhu Y, Yan J, Sun Y and He H 2014 IEEE Trans. Parallel and Distributed Syst. 25 3274
[8] Zhang Z G, Ding Z, Fan J F, Meng J, Ding Y M, Ye F F and Chen X S 2015 Chin. Phys. B 24 090201
[9] Cai Y, Cao Y, Li Y, Huang T and Zhou B 2016 IEEE Trans. Smart Grid 7 530
[10] Hu F, Yeung C H, Yang S, Wang W and Zeng A 2016 Sci. Rep. 6 24522
[11] Cohen R, Erez K, Benavraham D and Havlin S 2001 Phys. Rev. Lett. 86 3682
[12] Cohen R, Havlin S and Benavraham D 2003 Phys. Rev. Lett. 91 247901
[13] Beygelzimer A, Grinstein G, Linsker R and Rish I 2005 Physica A 357 593
[14] Schneider C M, Moreira A A, Andrade Jr J S, Havlin S and Herrmann H J 2011 Proc. Natl. Acad. Sci. USA 108 3838
[15] Pocock M J O, Evans D M and Memmott J 2012 Science 335 973
[16] Dong G, Gao J, Du R, Tian L, Stanley H E and Havlin S 2013 Phys. Rev. E 87 052804
[17] Min B, Yi S D, Lee K M and Goh K I 2014 Phys. Rev. E 89 042811
[18] Callaway D S, Newman M E J, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[19] Albert R, Jeong H and Barabasi A L 2000 Nature 406 378
[20] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109
[21] Iyer S, Killingback T, Sundaram B and Wang Z 2013 PLoS ONE 8 e59613
[22] Zhang Z Z, Xu W J, Zeng S Y and Lin J R 2014 Chin. Phys. B 23 088902
[23] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[24] Gao J, Buldyrev S V, Havlin S and Stanley H E 2011 Phys. Rev. Lett. 107 195701
[25] Motter A E and Lai Y 2002 Phys. Rev. E 66 065102
[26] Wang B and Kim B J 2007 Europhys. Lett. 78 48001
[27] Li P, Wang B H, Sun H, Gao P and Zhou T 2008 Eur. Phys. J. B 62 101
[28] Wu Z, Peng G, Wang W, Chan S and Wong E 2008 J. Stat. Mech.: Theory and Experiment 2008 05013
[29] Wang W and Chen G 2008 Phys. Rev. E 77 026101
[30] Mirzasoleiman B, Babaei M, Jalili M and Safari M 2011 Phys. Rev. E 84 046114
[31] Wang J 2013 Safety Sci. 53 219
[32] Lv C C, Si S B, Duan D L and Zhan R 2017 Physica A 471 837
[33] Majdandzic A, Podobnik B, Buldyrev S V, Kenett D Y, Havlin S and Stanley H E 2014 Nat. Phys. 10 34
[34] Shang Y L 2016 Sci. Rep. 6 30521
[35] Gallos L K and Fefferman N H 2015 Phys. Rev. E 92 052806
[36] Shang Y L 2015 Phys. Rev. E 91 042804
[37] Shang Y L 2016 J. Stat. Mech.: Theory and Experiment 2016 1742
[38] Duan D, Ling X, Wu X, Ouyang D and Zhong B 2014 Physica A 416 252
[39] Barabasi A L and Albert R 1999 Science 286 509
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[4] Robustness measurement of scale-free networks based on motif entropy
Yun-Yun Yang(杨云云), Biao Feng(冯彪), Liao Zhang(张辽), Shu-Hong Xue(薛舒红), Xin-Lin Xie(谢新林), and Jian-Rong Wang(王建荣). Chin. Phys. B, 2022, 31(8): 080201.
[5] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[6] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[7] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[8] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[9] High-fidelity resonant tunneling passage in three-waveguide system
Rui-Qiong Ma(马瑞琼), Jian Shi(时坚), Lin Liu(刘琳), Meng Liang(梁猛), Zuo-Liang Duan(段作梁), Wei Gao(高伟), and Jun Dong(董军). Chin. Phys. B, 2022, 31(2): 024202.
[10] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[11] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[12] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[13] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[14] Design and investigation of novel ultra-high-voltage junction field-effect transistor embedded with NPN
Xi-Kun Feng(冯希昆), Xiao-Feng Gu(顾晓峰), Qin-Ling Ma(马琴玲), Yan-Ni Yang(杨燕妮), and Hai-Lian Liang(梁海莲). Chin. Phys. B, 2021, 30(7): 078502.
[15] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
No Suggested Reading articles found!