Special Issue:
SPECIAL TOPIC — Quantum computation and quantum simulation
|
SPECIAL TOPIC—Quantum computation and quantum simulation |
Prev
Next
|
|
|
Nonlocal advantage of quantum coherence in a dephasing channel with memory |
Ming-Liang Hu(胡明亮)1,2,†, Yu-Han Zhang(张宇晗)1, and Heng Fan(范桁)2,3,4,‡ |
1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
Abstract We investigate nonlocal advantage of quantum coherence (NAQC) in a correlated dephasing channel modeled by the multimode bosonic reservoir. We obtain analytically the dephasing and memory factors of this channel for the reservoir having a Lorentzian spectral density, and analyze how they affect the NAQC defined by the l1 norm and relative entropy. It is shown that the memory effects of this channel on NAQC are state-dependent, and they suppress noticeably the rapid decay of NAQC for the family of input Bell-like states with one excitation. For the given transmission time of each qubit, we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
|
Received: 10 September 2020
Revised: 02 October 2020
Accepted manuscript online: 01 December 2020
|
PACS:
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675129, 11774406, and 11934018), the National Key R&D Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G07). |
Corresponding Authors:
†Corresponding author. E-mail: mingliang0301@163.com ‡Corresponding author. E-mail: hfan@iphy.ac.cn
|
Cite this article:
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁) Nonlocal advantage of quantum coherence in a dephasing channel with memory 2021 Chin. Phys. B 30 030308
|
1 Ficek Z and Swain S2005 Quantum interference and coherence: theory and experiments, Springer Series in Optical Sciences (New York: Springer) 2 Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1 3 Nielsen M A and Chuang I L2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) 4 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401 5 Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403 6 Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502 7 Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107 8 Girolami D 2014 Phys. Rev. Lett. 113 170401 9 Yu C S 2017 Phys. Rev. A 95 042337 10 Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124 11 Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404 12 Qi X, Gao T and Yan F 2017 J. Phys. A 50 285301 13 Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405 14 Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407 15 Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A 53 085301 16 Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405 17 Hillery M 2016 Phys. Rev. A 93 012111 18 Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307 19 Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118 20 Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406 21 Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112 22 Malvezzi A L, Karpat G, \cCakmak B C, Fanchini F F, Debarba T and Vianna R O 2016 Phys. Rev. B 93 184428 23 Karpat G, \cCakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431 24 Yi T C, You W L, Wu N and Ole\'s A M 2019 Phys. Rev. B 100 024423 25 Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305 26 Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329 27 Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112 28 Hu M L and Fan H 2017 Phys. Rev. A 95 052106 29 Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598 30 Hu X, Milne A, Zhang B and Fan H 2015 Sci. Rep. 6 19365 31 Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301 32 Hu M L and Fan H 2018 Phys. Rev. A 98 022312 33 Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317 34 Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401 35 Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303 36 Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402 37 Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602 38 Hu M L and Fan H 2016 Sci. Rep. 6 29260 39 Guarnieri G, Kolá\vr M and Filip R 2018 Phys. Rev. Lett. 121 070401 40 Mukhopadhyay C 2018 Phys. Rev. A 98 012102 41 Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203 42 Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301 43 Addis C, Karpat G, Macchiavello C and Maniscalco S 2016 Phys. Rev. A 94 032121 44 Karpat G 2018 Can. J. Phys. 96 700 45 Hu M L and Zhou W 2019 Laser Phys. Lett. 16 045201 46 Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322 47 Hu M L and Wang H F 2020 Ann. Phys. (Berlin) 532 1900378 48 D'Arrigo A, Benenti G and Falci G 2007 New J. Phys. 9 310 49 D'Arrigo A, Benenti G and Falci G 2008 Eur. Phys. J.: Spec. Top. 160 83 50 Benenti G, D'Arrigo A and Falci G 2009 Phys. Rev. Lett. 103 020502 51 Weiss U1999 Quantum Dissipative Systems (Singapore: World Scientific) 52 Wootters W K 1998 Phys. Rev. Lett. 80 2245 53 Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|