Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(3): 030308    DOI: 10.1088/1674-1056/abcf4a
Special Issue: SPECIAL TOPIC — Quantum computation and quantum simulation
SPECIAL TOPIC—Quantum computation and quantum simulation Prev   Next  

Nonlocal advantage of quantum coherence in a dephasing channel with memory

Ming-Liang Hu(胡明亮)1,2,†, Yu-Han Zhang(张宇晗)1, and Heng Fan(范桁)2,3,4,
1 School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China; 2 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  We investigate nonlocal advantage of quantum coherence (NAQC) in a correlated dephasing channel modeled by the multimode bosonic reservoir. We obtain analytically the dephasing and memory factors of this channel for the reservoir having a Lorentzian spectral density, and analyze how they affect the NAQC defined by the l1 norm and relative entropy. It is shown that the memory effects of this channel on NAQC are state-dependent, and they suppress noticeably the rapid decay of NAQC for the family of input Bell-like states with one excitation. For the given transmission time of each qubit, we also obtain the regions of the dephasing and memory factors during which there is NAQC in the output states.
Keywords:  quantum coherence      correlated quantum channel      memory effects  
Received:  10 September 2020      Revised:  02 October 2020      Accepted manuscript online:  01 December 2020
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11675129, 11774406, and 11934018), the National Key R&D Program of China (Grant Nos. 2016YFA0302104 and 2016YFA0300600), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Research Program of Beijing Academy of Quantum Information Sciences (Grant No. Y18G07).
Corresponding Authors:  Corresponding author. E-mail: mingliang0301@163.com Corresponding author. E-mail: hfan@iphy.ac.cn   

Cite this article: 

Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁) Nonlocal advantage of quantum coherence in a dephasing channel with memory 2021 Chin. Phys. B 30 030308

1 Ficek Z and Swain S2005 Quantum interference and coherence: theory and experiments, Springer Series in Optical Sciences (New York: Springer)
2 Hu M L, Hu X, Wang J C, Peng Y, Zhang Y R and Fan H 2018 Phys. Rep. 762-764 1
3 Nielsen M A and Chuang I L2010 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
4 Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
5 Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
6 Napoli C, Bromley T R, Cianciaruso M, Piani M, Johnston N and Adesso G 2016 Phys. Rev. Lett. 116 150502
7 Piani M, Cianciaruso M, Bromley T R, Napoli C, Johnston N and Adesso G 2016 Phys. Rev. A 93 042107
8 Girolami D 2014 Phys. Rev. Lett. 113 170401
9 Yu C S 2017 Phys. Rev. A 95 042337
10 Yuan X, Zhou H, Cao Z and Ma X 2015 Phys. Rev. A 92 022124
11 Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
12 Qi X, Gao T and Yan F 2017 J. Phys. A 50 285301
13 Streltsov A, Chitambar E, Rana S, Bera M N, Winter A and Lewenstein M 2016 Phys. Rev. Lett. 116 240405
14 Ma J, Yadin B, Girolami D, Vedral V and Gu M 2016 Phys. Rev. Lett. 116 160407
15 Shi Y H, Shi H L, Wang X H, Hu M L, Liu S Y, Yang W L and Fan H 2020 J. Phys. A 53 085301
16 Bu K, Singh U, Fei S M, Pati A K and Wu J 2017 Phys. Rev. Lett. 119 150405
17 Hillery M 2016 Phys. Rev. A 93 012111
18 Shi H L, Liu S Y, Wang X H, Yang W L, Yang Z Y and Fan H 2017 Phys. Rev. A 95 032307
19 Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
20 Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
21 Chen J J, Cui J, Zhang Y R and Fan H 2016 Phys. Rev. A 94 022112
22 Malvezzi A L, Karpat G, \cCakmak B C, Fanchini F F, Debarba T and Vianna R O 2016 Phys. Rev. B 93 184428
23 Karpat G, \cCakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431
24 Yi T C, You W L, Wu N and Ole\'s A M 2019 Phys. Rev. B 100 024423
25 Hu M L, Gao Y Y and Fan H 2020 Phys. Rev. A 101 032305
26 Tan K C, Kwon H, Park C Y and Jeong H 2016 Phys. Rev. A 94 022329
27 Yao Y, Xiao X, Ge L and Sun C P 2015 Phys. Rev. A 92 022112
28 Hu M L and Fan H 2017 Phys. Rev. A 95 052106
29 Zhang J, Yang S R, Zhang Y and Yu C S 2017 Sci. Rep. 7 45598
30 Hu X, Milne A, Zhang B and Fan H 2015 Sci. Rep. 6 19365
31 Mondal D, Pramanik T and Pati A K 2017 Phys. Rev. A 95 010301
32 Hu M L and Fan H 2018 Phys. Rev. A 98 022312
33 Hu M L, Wang X M and Fan H 2018 Phys. Rev. A 98 032317
34 Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
35 Yu X D, Zhang D J, Liu C L and Tong D M 2016 Phys. Rev. A 93 060303
36 Silva I A, Souza A M, Bromley T R, Cianciaruso M, Marx R, Sarthour R S, Oliveira I S, Franco R L, Glaser S J, deAzevedo E R, Soares-Pinto D O and Adesso G 2016 Phys. Rev. Lett. 117 160402
37 Zhang A, Zhang K, Zhou L and Zhang W 2018 Phys. Rev. Lett. 121 073602
38 Hu M L and Fan H 2016 Sci. Rep. 6 29260
39 Guarnieri G, Kolá\vr M and Filip R 2018 Phys. Rev. Lett. 121 070401
40 Mukhopadhyay C 2018 Phys. Rev. A 98 012102
41 Caruso F, Giovannetti V, Lupo C and Mancini S 2014 Rev. Mod. Phys. 86 1203
42 Macchiavello C and Palma G M 2002 Phys. Rev. A 65 050301
43 Addis C, Karpat G, Macchiavello C and Maniscalco S 2016 Phys. Rev. A 94 032121
44 Karpat G 2018 Can. J. Phys. 96 700
45 Hu M L and Zhou W 2019 Laser Phys. Lett. 16 045201
46 Hu M L and Fan H 2020 Sci. China-Phys. Mech. Astron. 63 230322
47 Hu M L and Wang H F 2020 Ann. Phys. (Berlin) 532 1900378
48 D'Arrigo A, Benenti G and Falci G 2007 New J. Phys. 9 310
49 D'Arrigo A, Benenti G and Falci G 2008 Eur. Phys. J.: Spec. Top. 160 83
50 Benenti G, D'Arrigo A and Falci G 2009 Phys. Rev. Lett. 103 020502
51 Weiss U1999 Quantum Dissipative Systems (Singapore: World Scientific)
52 Wootters W K 1998 Phys. Rev. Lett. 80 2245
53 Horodecki R, Horodecki P and Horodecki M 1995 Phys. Lett. A 200 340
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[4] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[10] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[11] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[12] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[13] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[14] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[15] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
No Suggested Reading articles found!