CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy |
Li Ge-Tian (李歌天)a, Liu Zhu-Hong (柳祝红)a, Meng Fan-Yan (孟凡研)a, Ma Xing-Qiao (马星桥)a, Wu Guang-Heng (吴光恒)b |
a Department of Physics, University of Science and Technology Beijing, Beijing 100083, China; b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China |
|
|
Abstract The structures, the martensitic transformations, and the magnetic properties are studied systematically in Mn50Ni40-xCuxIn10, Mn50-xCuxNi40In10, and Mn50Ni40In10-xCux alloys. The partial substitution of Ni by Cu reduces the martensitic transformation temperature, but has little influence on the Curie temperature of austenite. Comparatively, the martensitic transformation temperature increases and the Curie temperature of austenite decreases with the partial replacement of Mn or In by Cu. The magnetization difference between the austenite phase and the martensite phase reaches 70 emu/g in Mn50Ni39Cu1In10; a field-induced martensite-to-austenite transition is observed in this alloy.
|
Received: 11 August 2013
Revised: 29 September 2013
Accepted manuscript online:
|
PACS:
|
62.20.fg
|
(Shape-memory effect; yield stress; superelasticity)
|
|
81.30.Kf
|
(Martensitic transformations)
|
|
71.20.Lp
|
(Intermetallic compounds)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51001010 and 11174030), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100006120001), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry of China. |
Corresponding Authors:
Liu Zhu-Hong
E-mail: zhliu_info@yahoo.com
|
Cite this article:
Li Ge-Tian (李歌天), Liu Zhu-Hong (柳祝红), Meng Fan-Yan (孟凡研), Ma Xing-Qiao (马星桥), Wu Guang-Heng (吴光恒) Effects of Cu on the martensitic transformation and magnetic properties of Mn50Ni40In10 alloy 2013 Chin. Phys. B 22 126201
|
[1] |
Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kita-kami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
|
[2] |
Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
|
[3] |
Ito W, Xu X, Umetsu R Y, Kanomata T, Ishida K and Kainuma R 2011 J. Appl. Phys. 109 07A926
|
[4] |
Koyama K, Okada H, Watanabe K, Kanomata T, Kainuma R, Ito W, Oikawa K and Ishida K 2006 Appl. Phys. Lett. 89 182510
|
[5] |
Umetsu R Y, Sheikh A, Ito W, Ouladdiaf B, Ziebeck K R A, Kanomata T and Kainuma R 2011 Appl. Phys. Lett. 98 042507
|
[6] |
Li P P, Wang J M and Jiang C B 2011 Chin. Phys. B 20 028104
|
[7] |
Hu F X, Shen B G and Sun J R 2013 Chin. Phys. B 22 037505
|
[8] |
Tian X H, Sui J H, Zhang X, Feng X and Cai W 2011 Chin. Phys. B 20 047503
|
[9] |
Sánchez Llamazares J L, Sanchez T, Santos J D, Pérez M J, Sanchez M L, Hernando B, Escoda Ll, Suño J J and Varga R 2008 Appl. Phys. Lett. 92 012513
|
[10] |
Krenke T, Acet M, Wassermann E, Moya X, Mañosa L and Planes A 2006 Phys. Rev. B 73 174413
|
[11] |
Johnston G B and Hall E O 1968 J. Phys. Chem. Solids 29 193
|
[12] |
Barman S R, Ranik S, Shukla A K, Kamal C and Charkrabarti A 2007 Europhys. Lett. 80 57002
|
[13] |
Sanjay Singh, Maniraj M, D’Souza S W, Ranjan R and Barman S R 2010 Appl. Phys. Lett. 96 081904
|
[14] |
Liu G D, Dai X F, Liu H Y, Chen J L, Li Y X, Xiao G and Wu G H 2008 Phys. Rev. B 77 014424
|
[15] |
Wu Z G, Liu Z H, Yang H, Liu Y and Wu G H 2011 Intermetallics 19 1839
|
[16] |
Liu G D, Chen J L, Liu Z H, Dai X F and Wu G H 2005 Appl. Phys. Lett. 87 262504
|
[17] |
Ma L, Zhang H W, Yu S Y, Zhu Z Y, Chen J L, Wu G H, Liu H Y, Qu J P and Li Y X 2008 Appl. Phys. Lett. 92 032509
|
[18] |
Sánchez Llamazares J L, Hernando B, Prida V M, Garcia C, Gonzalez J, Varga R and Ross C A 2009 J. Appl. Phys. 105 07A945
|
[19] |
Wu Z G, Liu Z H, Yang H, Liu Y and Wu G H 2011 Appl. Phys. Lett. 98 061904
|
[20] |
Stadler S, Khan M, Mitchell J, Ali N, Gomes A M, Dubenko I, Takeuchi A Y and Guimarães A P 2006 Appl. Phys. Lett. 88 192511
|
[21] |
Jiang C B, Wang J M, Li P P, Jia A and Xu H B 2009 Appl. Phys. Lett. 95 012501
|
[22] |
Mahmud Khan, Jung J, Stoyko S S, Arthur Mar, Abdiel Quetz, Tapas Samanta, Igor Dubenko, Naushad Ali, Shane Stadler and Chow K H 2012 Appl. Phys. Lett. 100 172403
|
[23] |
Sharma V K, Chattopadhyay M K, Khandelwal A and Roy S B 2010 Phys. Rev. B 82 172411
|
[24] |
Li J Q, Liu Z H, Yu H C, Zhang M, Zhou Y Q and Wu G H 2003 Solid State Commun. 126 323
|
[25] |
Chernenko V A 1999 Scr. Mater. 40 523
|
[26] |
Krenke T, Moya X, Aksoy S, Acet M, Entel P, Mañosa L I, Planes A, Elerman Y, Yücel A and Wassermann E F 2007 J. Magn. Magn. Mater. 310 2788
|
[27] |
Jiang C B, Feng G, Gong S K and Xu H B 2003 Mater. Sci. Eng. A 342 231
|
[28] |
Sterns M B 1979 J. Appl. Phys. 50 2060
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|