CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature |
Xiao-Hua Luo(罗小华)1, Wei-Jun Ren(任卫军)1, Wei Jin(金伟)2, Zhi-Dong Zhang(张志东)1 |
1 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China;
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
|
|
Abstract Solid refrigeration technology based on the elastocaloric effect has a great potential alternative to the conventional vapor compression cooling. Here we report the large elastocaloric effect in Ti-Ni (50 at%) shape memory alloy below its austenite finish temperature Af under different strain. Both Maxwell's and Clausius-Clapeyron equations are used to estimate the entropy change. The strain-induced entropy change increases with raising the strain and gets a maximum value at a few kelvins below Af. The maximum entropy changes ΔSmax are -20.44 and -53.70 J/kg·K, respectively for 1% and 2% strain changes. Large entropy change may be obtained down to 20 K below Af. The temperature of the maximum entropy change remains unchanged before the plastic deformation appears but moves towards low temperature when the plastic deformation happens.
|
Received: 24 October 2016
Revised: 10 December 2016
Accepted manuscript online:
|
PACS:
|
65.40.De
|
(Thermal expansion; thermomechanical effects)
|
|
46.25.Hf
|
(Thermoelasticity and electromagnetic elasticity (electroelasticity, magnetoelasticity))
|
|
62.20.fg
|
(Shape-memory effect; yield stress; superelasticity)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671192 and 51531008) and the Chinese Academy of Sciences (Grant No. KJZD-EW-M05). |
Corresponding Authors:
Wei-Jun Ren
E-mail: wjren@lmr.ac.cn
|
Cite this article:
Xiao-Hua Luo(罗小华), Wei-Jun Ren(任卫军), Wei Jin(金伟), Zhi-Dong Zhang(张志东) Large elastocaloric effect in Ti-Ni shape memory alloy below austenite finish temperature 2017 Chin. Phys. B 26 036501
|
[1] |
Pecharsky V K and Gschneidner J K A 1997 Phys. Rev. Lett. 78 4494
|
[2] |
Gschneidner J K A, Pecharsky V K and TsokolA O 2005 Rep. Prog. Phys. 68 1479
|
[3] |
Shen J, Li Y X, Sun J R and Shen B G 2009 Chin. Phys. B 18 2058
|
[4] |
Manosa L, Gonzalez-Alonso D, Planes A, Bonnot E, Barrio M, Tamarit J L, Aksoy S and Acet M 2010 Nat. Mater. 9 478
|
[5] |
Hu F X, Shen B G and Sun J R 2013 Chin. Phys. B 22 037505
|
[6] |
Shen B G, Hu F X, Dong Q Y and Sun J R 2013 Chin. Phys. B 22 017502
|
[7] |
Tegus O, Bao L H and Song L 2013 Chin. Phys. B 22 037506
|
[8] |
Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L and Du Y W 2013 Chin. Phys. B 22 077506
|
[9] |
Mischenko A S, Zhang Q, Scott J F, Whatmore R W and Mathur N D 2006 Science 311 1270
|
[10] |
Neese B, Chu B J, Lu S G, Wang Y, Furman E and Zhang Q M 2008 Science 321 821
|
[11] |
Qiu J H, Ding J N, Yuan N Y and Wang X Q 2012 Chin. Phys. B 21 097701
|
[12] |
Qiu J H, Ding J N, Yuan N Y and Wang X Q 2013 Chin. Phys. B 22 017701
|
[13] |
Fähler S, Röessler U K, Kastner O, Eckert J, Eggeler G, Emmerich H, Entel P, Mueller S, Quandt E and Albe K 2012 Adv. Eng. Mater. 14 10
|
[14] |
Manosa L, Planes A and Acet M 2013 J. Mater. Chem. A 1 4925
|
[15] |
Moya X, Kar-Narayan S and Mathur N D 2014 Nat. Mater. 13 439
|
[16] |
Xu Y, Lu B F, Sun W, Yan A R and Liu J 2015 Appl. Phys. Lett. 106 201903
|
[17] |
Bonnot E, Romero R, Manosa L, Vives E and Planes A 2008 Phys. Rev. Lett. 100 125901
|
[18] |
Cui J, Wu Y, Muehlbauer J, Wang Y H, Radermacher R, Fackler S, Wuttig M and Takeuchi I 2012 Appl. Phys. Lett. 101 073904
|
[19] |
Bechtold C, Chluba C, De Miranda R L and Quandt E 2012 Appl. Phys. Lett. 101 091903
|
[20] |
Ossmer H, Lambrecht F, Gueltig M, Chluba C, Quandt E and Kohl M 2014 Acta Mater. 81 9
|
[21] |
Tušek J, Engelbrecht K, Mikkelsen L P and Pryds N 2015 J. Appl. Phys. 117 124901
|
[22] |
Pataky G J, Ertekin E and Sehitoglu H 2015 Acta Mater. 96 420
|
[23] |
Xiao F, Fukuda T and Kakeshita T 2013 Appl. Phys. Lett. 102 161914
|
[24] |
Xiao F, Fukuda T, Kakeshita T and Jin X 2015 Acta Mater. 87 8
|
[25] |
Castillo-Villa P O, Manosa L, Planes A, Soto-Parra D E, Sanchez-Llamazares J L, Flores-Zuniga H and Frontera C 2013 J. Appl. Phys. 113 053506
|
[26] |
Lu B F, Xiao F, Yan A R and Liu J 2014 Appl. Phys. Lett. 105 161905
|
[27] |
Millan-Solsona R, Stern-Taulats E, Vives E, Planes A, Sharma J, Nayak A K, Suresh K G and Manosa L 2014 Appl. Phys. Lett. 105 241901
|
[28] |
Xiao F, Jin M J, Liu J and Jin X J 2015 Acta Mater. 96 292
|
[29] |
Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
|
[30] |
Tong H C and Wayman C M 1974 Acta Metall. 22 887
|
[31] |
Melton K N and Mercier O 1981 Acta Metall. 29 393
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|