Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(1): 017304    DOI: 10.1088/1674-1056/abccbb
Special Issue: SPECIAL TOPIC—Unconventional superconductivity SPECIAL TOPIC — Unconventional superconductivity
SPECIAL TOPIC—Unconventional superconductivity Prev   Next  

Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2

Meng-Di Zhang(张孟迪)1,2, Sheng Xu(徐升)3, Xing-Yuan Hou(侯兴元)1, Ya-Dong Gu(谷亚东)1,2, Fan Zhang(张凡)1,2, Tian-Long Xia(夏天龙)3, Zhi-An Ren(任治安)1,2,4,†, Gen-Fu Chen(陈根富)1,2,4,‡, Ning Hao(郝宁)5, and Lei Shan(单磊)1,2,6,7,§
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 6 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 7 Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
Abstract  We report the tip-induced superconductivity on the topological semimetal NbSb2, similar to the observation on TaAs2 and NbAs2. Belonging to the same family of MPn2, all these materials possess similar band structures, indicating that the tip-induced superconductivity may be closely related to their topological nature and share a common mechanism. Further analysis suggests that a bulk band should play the dominant role in such local superconductivity most likely through interface coupling. In addition, the compatibility between the induced superconductivity and tips' ferromagnetism gives an evidence for its unconventional nature. These results provide further clues to elucidate the mechanism of the tip-induced superconductivity observed in topological materials.
Keywords:  tip-induced superconductivity      topological      mechanism  
Received:  30 October 2020      Revised:  13 November 2020      Accepted manuscript online:  23 November 2020
PACS:  73.40.Jn (Metal-to-metal contacts)  
  73.40.-c (Electronic transport in interface structures)  
  74.50.+r (Tunneling phenomena; Josephson effects)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302904, 2017YFA0303201, 2018YFA0305602, and 2016YFA0300604), the National Natural Science Foundation of China (Grants Nos. 12074002, 11574372, 11674331, 11804379, and 11874417), the National Basic Research Program of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants Nos. XDB07020300, XDB07020100, and XDB33030100), the Collaborative Innovation Program of Hefei Science Center, the Chinese Academy of Sciences (Grant No. 2020HSC-CIP002), CASHIPS Director's Fund, China (Grant No. BJPY2019B03), and the Recruitment Program for Leading Talent Team of Anhui Province, China (2019-16).
Corresponding Authors:  Corresponding author. E-mail: renzhian@iphy.ac.cn Corresponding author. E-mail: gfchen@iphy.ac.cn §Corresponding author. E-mail: lshan@ahu.edu.cn   

Cite this article: 

Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊) Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2 2021 Chin. Phys. B 30 017304

1 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005
2 Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001
3 Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004
4 Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001
5 Beenakker C W.J 2013 Annu. Rev. Condens. Matter Phys. 4 113
6 Tang E and Fu L 2014 Nat. Phys. 10 964
7 Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501
8 Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333
9 Beenakker C and Kouwenhoven L 2016 Nat. Phys. 12 618
10 Wilczek F 2009 Nat. Phys. 5 614
11 Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001
12 Qi Y P, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Sü\ss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B H and Medvedev S A 2016 Nat. Commun. 7 11038
13 Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804
14 He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014
15 Shruti, Maurya V K, Neha P, Srivastava P and Patnaik S 2015 Phys. Rev. B 92 020506
16 Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001
17 Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001
18 Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003
19 Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32
20 Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38
21 Aggarwal L, Gayen S, Das S, Kumar R, Sü\ss V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 1
22 Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425
23 Luo J W, Li Y N, Li J C, Hashimoto T, Kawakami T, Lu H, Jia S, Sato M and Wang J 2019 Phys. Rev. Materials 3 124201
24 Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 101 134503
25 Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F and Shan L 2019 Phys. Rev. B 100 235109
26 Aggarwal L, Singh C K, Aslam M, Singha R, Pariari A, Gayen S, Kabir M, Mandal P and Sheet G 2019 J. Phys.: Condens. Matter 31 485707
27 Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 102 085139
28 Li Y P, Wang Z, Lu Y H, Yang X J, Shen Z X, Sheng F, Feng C M, Zheng Y and Xu Z A arXiv:1603.04056
29 Xu C C, Chen J, Zhi G X, Li Y K, Dai J H and Cao C 2016 Phys. Rev. B 93 195106
30 Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405
31 Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103
32 Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451
33 Sheet G, Mukhopadhyay S and Raychaudhuri P 2004 Phys. Rev. B 69 134507
34 Deutscher G 2005 Rev. Mod. Phys. 77 109
35 Golubov A A, Brinkman A, Tanaka Y, Mazin I I and Dolgov O V 2009 Phys. Rev. Lett. 103 077003
36 Leijnse M and Flensberg K 2012 Supercond. Sci. Technol. 27 124003
37 Alicea J 2012 Rep. Prog. Phys. 75 076501
38 Bourgeois O and Dynes R C 2002 Phys. Rev. B 65 144503
39 Sidorenko A S, Zdravkov V I, Prepelitsa A A, Helbig C, Luo Y, Gsell S, Schreck M, Klimm S, Horn S, Tagirov L R and Tidecks R 2003 Ann. Phys. 12 37
40 Gong X X, Zhou H X, Xu P C, Yue D, Zhu K, Jin X F, Tian H, Zhao G J and Chen T Y 2015 Chin. Phys. Lett. 32 067402
41 Ji Y, Chien C L, Tomioka Y and Tokura Y 2002 Phys. Rev. B 66 012410
42 Fay D and Appel J 1980 Phys. Rev. B 22 3173
43 Cho G Y, Bardarson J H, Lu Y M and Moore J E 2012 Phys. Rev. B 86 214514
44 Wei H Z, Chao S P and Aji V 2014 Phys. Rev. B 89 014506
45 Das S, Aggarwal L, Roychowdhury S, Aslam M, Gayen S, Biswas K and Sheet G 2016 Appl. Phys. Lett. 109 132601
46 Wang H, Liu Y Z, Zhou H B, Ji H R and Wang J2020 Sci. China Phys. Mech. Astron. 63
[1] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[2] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[3] Tunable topological interface states and resonance states of surface waves based on the shape memory alloy
Shao-Yong Huo(霍绍勇), Long-Chao Yao(姚龙超), Kuan-Hong Hsieh(谢冠宏), Chun-Ming Fu(符纯明), Shih-Chia Chiu(邱士嘉), Xiao-Chao Gong(龚小超), and Jian Deng(邓健). Chin. Phys. B, 2023, 32(3): 034303.
[4] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[5] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[6] Hall conductance of a non-Hermitian two-band system with k-dependent decay rates
Junjie Wang(王俊杰), Fude Li(李福德), and Xuexi Yi(衣学喜). Chin. Phys. B, 2023, 32(2): 020305.
[7] Engineering topological state transfer in four-period Su-Schrieffer-Heeger chain
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(2): 020301.
[8] Chiral symmetry protected topological nodal superconducting phase and Majorana Fermi arc
Mei-Ling Lu(卢美玲), Yao Wang(王瑶), He-Zhi Zhang(张鹤之), Hao-Lin Chen(陈昊林), Tian-Yuan Cui(崔天元), and Xi Luo(罗熙). Chin. Phys. B, 2023, 32(2): 027301.
[9] Majorana zero modes induced by skyrmion lattice
Dong-Yang Jing(靖东洋), Huan-Yu Wang(王寰宇), Wen-Xiang Guo(郭文祥), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2023, 32(1): 017401.
[10] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
[11] High Chern number phase in topological insulator multilayer structures: A Dirac cone model study
Yi-Xiang Wang(王义翔) and Fu-Xiang Li(李福祥). Chin. Phys. B, 2022, 31(9): 090501.
[12] Spin-orbit coupling adjusting topological superfluid of mass-imbalanced Fermi gas
Jian Feng(冯鉴), Wei-Wei Zhang(张伟伟), Liang-Wei Lin(林良伟), Qi-Peng Cai(蔡启鹏), Yi-Cai Zhang(张义财), Sheng-Can Ma(马胜灿), and Chao-Fei Liu(刘超飞). Chin. Phys. B, 2022, 31(9): 090305.
[13] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[14] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[15] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
No Suggested Reading articles found!