Special Issue:
SPECIAL TOPIC—Unconventional superconductivity
SPECIAL TOPIC — Unconventional superconductivity
|
SPECIAL TOPIC—Unconventional superconductivity |
Prev
Next
|
|
|
Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2 |
Meng-Di Zhang(张孟迪)1,2, Sheng Xu(徐升)3, Xing-Yuan Hou(侯兴元)1, Ya-Dong Gu(谷亚东)1,2, Fan Zhang(张凡)1,2, Tian-Long Xia(夏天龙)3, Zhi-An Ren(任治安)1,2,4,†, Gen-Fu Chen(陈根富)1,2,4,‡, Ning Hao(郝宁)5, and Lei Shan(单磊)1,2,6,7,§ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China; 3 Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China; 6 Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China; 7 Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China |
|
|
Abstract We report the tip-induced superconductivity on the topological semimetal NbSb2, similar to the observation on TaAs2 and NbAs2. Belonging to the same family of MPn2, all these materials possess similar band structures, indicating that the tip-induced superconductivity may be closely related to their topological nature and share a common mechanism. Further analysis suggests that a bulk band should play the dominant role in such local superconductivity most likely through interface coupling. In addition, the compatibility between the induced superconductivity and tips' ferromagnetism gives an evidence for its unconventional nature. These results provide further clues to elucidate the mechanism of the tip-induced superconductivity observed in topological materials.
|
Received: 30 October 2020
Revised: 13 November 2020
Accepted manuscript online: 23 November 2020
|
PACS:
|
73.40.Jn
|
(Metal-to-metal contacts)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
74.50.+r
|
(Tunneling phenomena; Josephson effects)
|
|
85.30.Hi
|
(Surface barrier, boundary, and point contact devices)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFA0302904, 2017YFA0303201, 2018YFA0305602, and 2016YFA0300604), the National Natural Science Foundation of China (Grants Nos. 12074002, 11574372, 11674331, 11804379, and 11874417), the National Basic Research Program of China (Grant No. 2015CB921303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grants Nos. XDB07020300, XDB07020100, and XDB33030100), the Collaborative Innovation Program of Hefei Science Center, the Chinese Academy of Sciences (Grant No. 2020HSC-CIP002), CASHIPS Director's Fund, China (Grant No. BJPY2019B03), and the Recruitment Program for Leading Talent Team of Anhui Province, China (2019-16). |
Corresponding Authors:
†Corresponding author. E-mail: renzhian@iphy.ac.cn ‡Corresponding author. E-mail: gfchen@iphy.ac.cn §Corresponding author. E-mail: lshan@ahu.edu.cn
|
Cite this article:
Meng-Di Zhang(张孟迪), Sheng Xu(徐升), Xing-Yuan Hou(侯兴元), Ya-Dong Gu(谷亚东), Fan Zhang(张凡), Tian-Long Xia(夏天龙), Zhi-An Ren(任治安), Gen-Fu Chen(陈根富), Ning Hao(郝宁), and Lei Shan(单磊) Tip-induced superconductivity commonly existing in the family of transition-metal dipnictides MPn2 2021 Chin. Phys. B 30 017304
|
1 Chiu C K, Teo J C Y, Schnyder A P and Ryu S 2016 Rev. Mod. Phys. 88 035005 2 Weng H M, Dai X and Fang Z 2016 J. Phys.: Condens. Matter 28 303001 3 Bansil A, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 4 Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001 5 Beenakker C W.J 2013 Annu. Rev. Condens. Matter Phys. 4 113 6 Tang E and Fu L 2014 Nat. Phys. 10 964 7 Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 8 Wang D F, Kong L Y, Fan P, Chen H, Zhu S Y, Liu W Y, Cao L, Sun Y J, Du S X, Schneeloch J, Zhong R D, Gu G, Fu L, Ding H and Gao H J 2018 Science 362 333 9 Beenakker C and Kouwenhoven L 2016 Nat. Phys. 12 618 10 Wilczek F 2009 Nat. Phys. 5 614 11 Kirshenbaum K, Syers P S, Hope A P, Butch N P, Jeffries J R, Weir S T, Hamlin J J, Maple M B, Vohra Y K and Paglione J 2013 Phys. Rev. Lett. 111 087001 12 Qi Y P, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Sü\ss V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B H and Medvedev S A 2016 Nat. Commun. 7 11038 13 Kang D F, Zhou Y Z, Yi W, Yang C L, Guo J, Shi Y G, Zhang S, Wang Z, Zhang C, Jiang S, Li A, Yang K, Wu Q, Zhang G M, Sun L L and Zhao Z X 2015 Nat. Commun. 6 7804 14 He L P, Jia Y T, Zhang S J, Hong X C, Jin C Q and Li S Y 2016 npj Quantum Mater. 1 16014 15 Shruti, Maurya V K, Neha P, Srivastava P and Patnaik S 2015 Phys. Rev. B 92 020506 16 Hor Y S, Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 17 Xu J P, Wang M X, Liu Z L, Ge J F, Yang X J, Liu C H, Xu Z A, Guan D D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K and Jia J F 2015 Phys. Rev. Lett. 114 017001 18 Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C H, Qian D, Zhou Y, Fu L, Li S C, Zhang F C and Jia J F 2016 Phys. Rev. Lett. 116 257003 19 Aggarwal L, Gaurav A, Thakur G S, Haque Z, Ganguli A K and Sheet G 2016 Nat. Mater. 15 32 20 Wang H, Wang H C, Liu H W, Lu H, Yang W H, Jia S, Liu X J, Xie X C, Wei J and Wang J 2016 Nat. Mater. 15 38 21 Aggarwal L, Gayen S, Das S, Kumar R, Sü\ss V, Felser C, Shekhar C and Sheet G 2017 Nat. Commun. 8 1 22 Wang H, Wang H C, Chen Y Q, Luo J W, Yuan Z J, Liu J, Wang Y, Jia S, Liu X J, Wei J and Wang J 2017 Sci. Bull. 62 425 23 Luo J W, Li Y N, Li J C, Hashimoto T, Kawakami T, Lu H, Jia S, Sato M and Wang J 2019 Phys. Rev. Materials 3 124201 24 Hou X Y, Gu Y D, Li S J, Zhao L X, Zhu W L, Wang Z, Zhang M D, Zhang F, Zhang L, Zi H, Wu Y W, Yang H X, Ren Z A, Zhang P, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 101 134503 25 Hou X Y, Wang Z, Gu Y D, He J B, Chen D, Zhu W L, Zhang M D, Zhang F, Xu Y F, Zhang S, Yang H X, Ren Z A, Weng H M, Hao N, Lv W G, Hu J P, Chen G F and Shan L 2019 Phys. Rev. B 100 235109 26 Aggarwal L, Singh C K, Aslam M, Singha R, Pariari A, Gayen S, Kabir M, Mandal P and Sheet G 2019 J. Phys.: Condens. Matter 31 485707 27 Zhang M D, Hou X Y, Wang Q, Wang Y Y, Zhao L X, Wang Z, Gu Y D, Zhang F, Xia T L, Ren Z A, Chen G F, Hao N and Shan L 2020 Phys. Rev. B 102 085139 28 Li Y P, Wang Z, Lu Y H, Yang X J, Shen Z X, Sheng F, Feng C M, Zheng Y and Xu Z A arXiv:1603.04056 29 Xu C C, Chen J, Zhi G X, Li Y K, Dai J H and Cao C 2016 Phys. Rev. B 93 195106 30 Yuan Z J, Lu H, Liu Y J, Wang J F and Jia S 2016 Phys. Rev. B 93 184405 31 Wang Y Y, Yu Q H, Guo P J, Liu K and Xia T L 2016 Phys. Rev. B 94 041103 32 Tanaka Y and Kashiwaya S 1995 Phys. Rev. Lett. 74 3451 33 Sheet G, Mukhopadhyay S and Raychaudhuri P 2004 Phys. Rev. B 69 134507 34 Deutscher G 2005 Rev. Mod. Phys. 77 109 35 Golubov A A, Brinkman A, Tanaka Y, Mazin I I and Dolgov O V 2009 Phys. Rev. Lett. 103 077003 36 Leijnse M and Flensberg K 2012 Supercond. Sci. Technol. 27 124003 37 Alicea J 2012 Rep. Prog. Phys. 75 076501 38 Bourgeois O and Dynes R C 2002 Phys. Rev. B 65 144503 39 Sidorenko A S, Zdravkov V I, Prepelitsa A A, Helbig C, Luo Y, Gsell S, Schreck M, Klimm S, Horn S, Tagirov L R and Tidecks R 2003 Ann. Phys. 12 37 40 Gong X X, Zhou H X, Xu P C, Yue D, Zhu K, Jin X F, Tian H, Zhao G J and Chen T Y 2015 Chin. Phys. Lett. 32 067402 41 Ji Y, Chien C L, Tomioka Y and Tokura Y 2002 Phys. Rev. B 66 012410 42 Fay D and Appel J 1980 Phys. Rev. B 22 3173 43 Cho G Y, Bardarson J H, Lu Y M and Moore J E 2012 Phys. Rev. B 86 214514 44 Wei H Z, Chao S P and Aji V 2014 Phys. Rev. B 89 014506 45 Das S, Aggarwal L, Roychowdhury S, Aslam M, Gayen S, Biswas K and Sheet G 2016 Appl. Phys. Lett. 109 132601 46 Wang H, Liu Y Z, Zhou H B, Ji H R and Wang J2020 Sci. China Phys. Mech. Astron. 63 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|