Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084702    DOI: 10.1088/1674-1056/23/8/084702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit

Vahid Esfahanian, Esmaeil Dehdashti, Amir Mehdi Dehrouye-Semnani
Department of Mechanical Engineering, University of Tehran, Tehran 515-14395, Iran
Abstract  Fluid-structure interaction (FSI) problems in microchannels play a prominent role in many engineering applications. The present study is an effort toward the simulation of flow in microchannel considering FSI. The bottom boundary of the microchannel is simulated by size-dependent beam elements for the finite element method (FEM) based on a modified couple stress theory. The lattice Boltzmann method (LBM) using the D2Q13 LB model is coupled to the FEM in order to solve the fluid part of the FSI problem. Because of the fact that the LBM generally needs only nearest neighbor information, the algorithm is an ideal candidate for parallel computing. The simulations are carried out on graphics processing units (GPUs) using computed unified device architecture (CUDA). In the present study, the governing equations are non-dimensionalized and the set of dimensionless groups is exhibited to show their effects on micro-beam displacement. The numerical results show that the displacements of the micro-beam predicted by the size-dependent beam element are smaller than those by the classical beam element.
Keywords:  fluid-structure interaction      graphics processing unit      lattice Boltzmann method      size-dependent beam element  
Received:  05 September 2013      Revised:  13 January 2014      Accepted manuscript online: 
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  07.10.Cm (Micromechanical devices and systems)  
  47.61.Fg (Flows in micro-electromechanical systems (MEMS) and nano-electromechanical systems (NEMS))  
  81.40.-z (Treatment of materials and its effects on microstructure, nanostructure, And properties)  
Corresponding Authors:  Vahid Esfahanian     E-mail:  evahid@ut.ac.ir

Cite this article: 

Vahid Esfahanian, Esmaeil Dehdashti, Amir Mehdi Dehrouye-Semnani Simulation of fluid-structure interaction in a microchannel using the lattice Boltzmann method and size-dependent beam element on a graphics processing unit 2014 Chin. Phys. B 23 084702

[1] Karniadakis G, Beskok A and Aluru N R 2005 Microflows and Nanoflows: Fundamentals and Simulation (New York: Springer)
[2] Walhorn E, Kölke A, Hübner B and Dinkler D 2005 Comput. Struct. 83 2100
[3] LeTallec P and Mouro J 2001 Comput. Method Appl. Mech. Eng. 190 3039
[4] Küttler U and Wall W 2009 J. Appl. Mech. 2 76
[5] Löhner R, Cebral J R, Camelli F F, Baum J D, Mestreau E L and Soto O A 2007 Arch. Comput. Method Eng. 14 279
[6] Bathe K J, Nitikipaiboon C and Wang X 1995 Comput. Struct. 56 225
[7] Kwon Y W and McDermott P M 2001 J. Pres. Ves. Technol. 123 480
[8] Everstine G C and Henderson F M 1990 J. Acoust. Soc. Am. 87 1938
[9] Giordano J A and Koopmann G H 1995 J. Acoust. Soc. Am. 98 363
[10] Dubini G, Pietrabissa R and Montevecchi F M 1995 Med. Eng. Phys. 17 609
[11] Tienfuan K, Lee L L and Wellford L C 1997 J. Fluids Eng. Trans. ASME 119 354
[12] Ma Q and Clarke D R 1995 J. Mater. Res. 10 853
[13] Stolken J S and Evans A G 1998 Acta Mater. 46 5109
[14] Lam D C C, Yang F, Chong A C M, Wang J and Tong P 2003 J. Mech. Phys. Solid 51 1477
[15] McFarland A W and Colton J S 2005 J. Micromech. Microeng. 15 1060
[16] Kong S, Zhou S, Nie Z and Wang K 2008 Int. J. Eng. Sci. 46 427
[17] Maranganti R and Sharma P 2007 J. Mech. Phys. Solids 55 1823
[18] Park S K and Gao X L 2006 J. Micromech. Microeng. 16 2355
[19] Yang F, Chong A C M, Lam D C C and Tong P 2002 Int. J. Solids Struct. 39 2731
[20] Wang L 2010 Fluids and Structures 26 675
[21] Xia W and Wang L 2010 Microfluidics and Nanofluidics 9 955
[22] Wang L, Liu H T, Ni Q and Wu Y 2013 Int. J. Eng. Sci. 71 92
[23] Kahrobaiyan M H, Khajehpour M and Ahmadian M T ASME Conf. P., November 11-17, 2011, USA
[24] Suga K, Takenaka S, Ito T and Kaneda M 2010 Adv. Appl. Math. Mech. 2 609
[25] Swift M R, Orlandini E, Osborn W R and Yeomans J M 1996 Phys. Rev. E 54 5041
[26] Hu G H, Zhou Z W and Shi Z Y 2010 Acta Phys. Sin. 59 2595 (in Chinese)
[27] Soe M, Vahala G, Pavlo P, Vahala L and Chen H 1998 Phys. Rev. E 57 4227
[28] Zheng L, Shi B C and Chai Z H 2006 Chin. Phys. 15 1855
[29] Peng Y, Shu C and Chew Y T 2003 Phys. Rev. E 68 026701
[30] Ran Z 2009 Chin. Phys. B 18 2159
[31] Li H B and Lü X Y 2001 Acta Phys. Sin. 50 422 (in Chinese)
[32] Ladd A 1994 J. Fluid Mech. 271 285
[33] Ladd A 1994 J. Fluid Mech. 271 311
[34] Krafczyk M, Tolke J, Rank E and Schulz M 2001 Comput. Struct. 79 2031
[35] Kwon Y W 2006 Eng. Comput. 23 860
[36] Kollmannsberger S, Geller S, Düster A, Tölke J, Sorger C, Krafczyk M and Rank E 2009 Int. J. Numer. Meth. Eng. 79 817
[37] Li W, Wei X and Kaufman A 2003 Vis. Comput. 19 444
[38] Kuznik F, Obrecht C, Rusaouen G and Roux J J 2010 Comput. Math. Appl. 59 2380
[39] Frisch U, Hasslacher B and Pomeau Y 1986 Phys. Rev. Lett. 56 1505
[40] Bhatnagar P L, Gross E P and Krook M K 1954 Phys. Rev. 94 511
[41] Bungartz H J, Mehl M and Schäfer M 2010 Fluid Structure Interaction II: Modelling, Simulation, Optimization (Berlin/Heidelberg: Springer-Verlag) p. 299
[42] Guo Z L, Zheng C G and Shi B C 2002 Chin. Phys. 11 366
[1] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[2] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[3] Effect of viscosity on stability and accuracy of the two-component lattice Boltzmann method with a multiple-relaxation-time collision operator investigated by the acoustic attenuation model
Le Bai(柏乐), Ming-Lei Shan(单鸣雷), Yu Yang(杨雨), Na-Na Su(苏娜娜), Jia-Wen Qian(钱佳文), and Qing-Bang Han(韩庆邦). Chin. Phys. B, 2022, 31(3): 034701.
[4] Lattice Boltzmann model for interface capturing of multiphase flows based on Allen-Cahn equation
He Wang(王贺), Fang-Bao Tian(田方宝), and Xiang-Dong Liu(刘向东). Chin. Phys. B, 2022, 31(2): 024701.
[5] Effect of non-condensable gas on a collapsing cavitation bubble near solid wall investigated by multicomponent thermal MRT-LBM
Yu Yang(杨雨), Ming-Lei Shan(单鸣雷), Qing-Bang Han(韩庆邦), and Xue-Fen Kan(阚雪芬). Chin. Phys. B, 2021, 30(2): 024701.
[6] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[7] A mass-conserved multiphase lattice Boltzmann method based on high-order difference
Zhang-Rong Qin(覃章荣), Yan-Yan Chen(陈燕雁), Feng-Ru Ling(凌风如), Ling-Juan Meng(孟令娟), Chao-Ying Zhang(张超英). Chin. Phys. B, 2020, 29(3): 034701.
[8] Impact vibration properties of locally resonant fluid-conveying pipes
Bing Hu(胡兵), Fu-Lei Zhu(朱付磊), Dian-Long Yu(郁殿龙), Jiang-Wei Liu(刘江伟), Zhen-Fang Zhang(张振方), Jie Zhong(钟杰), and Ji-Hong Wen(温激鸿). Chin. Phys. B, 2020, 29(12): 124301.
[9] Boundary scheme for lattice Boltzmann modeling of micro-scale gas flow in organic-rich pores considering surface diffusion
Hong Zuo(左鸿), Shou-Chun Deng(邓守春), Hai-Bo Li(李海波). Chin. Phys. B, 2019, 28(3): 030202.
[10] Dynamics of a self-propelled particle under different driving modes in a channel flow
Zhenyu Ouyang(欧阳振宇), Jianzhong Lin(林建忠), Xiaoke Ku(库晓珂). Chin. Phys. B, 2017, 26(1): 014701.
[11] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
[12] Development of a new correlation to calculate permeability for flows with high Knudsen number
Esmaeil Dehdashti. Chin. Phys. B, 2016, 25(2): 024702.
[13] Pseudopotential multi-relaxation-time lattice Boltzmann model for cavitation bubble collapse with high density ratio
Ming-Lei Shan(单鸣雷), Chang-Ping Zhu(朱昌平), Cheng Yao(姚澄), Cheng Yin(殷澄), Xiao-Yan Jiang(蒋小燕). Chin. Phys. B, 2016, 25(10): 104701.
[14] Three-dimensional multi-relaxation-time lattice Boltzmann front-tracking method for two-phase flow
Hai-Qiong Xie(谢海琼), Zhong Zeng(曾忠), Liang-Qi Zhang(张良奇). Chin. Phys. B, 2016, 25(1): 014702.
[15] A multiple-relaxation-time lattice Boltzmann method for high-speed compressible flows
Li Kai (李凯), Zhong Cheng-Wen (钟诚文). Chin. Phys. B, 2015, 24(5): 050501.
No Suggested Reading articles found!