Special Issue:
SPECIAL TOPIC — Phononics and phonon engineering
|
SPECIAL TOPIC—Phononics and phonon engineering |
Prev
Next
|
|
|
Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions |
Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊),† and Jing-Tao Lü(吕京涛)‡ |
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract We show that a current-carrying coherent electron conductor can be treated as an effective bosonic energy reservoir involving different types of electron-hole pair excitations. For weak electron-boson coupling, hybrid energy transport between nonequilibrium electrons and bosons can be described by a Landauer-like formula. This allows for unified account of a variety of heat transport problems in hybrid electron-boson systems. As applications, we study the non-reciprocal heat transport between electrons and bosons, thermoelectric current from a cold-spot, and electronic cooling of the bosons. Our unified framework provides an intuitive way of understanding hybrid energy transport between electrons and bosons in their weak coupling limit. It opens the way of nonequilibrium reservoir engineering for efficient energy control between different quasi-particles at the nanoscale.
|
Received: 22 June 2020
Revised: 27 August 2020
Accepted manuscript online: 01 September 2020
|
PACS:
|
05.70.Ln
|
(Nonequilibrium and irreversible thermodynamics)
|
|
63.20.kd
|
(Phonon-electron interactions)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
85.65.+h
|
(Molecular electronic devices)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403501), the National Natural Science Foundation of China (Grant No. 21873033), and the Program for HUST Academic Frontier Youth Team. |
Corresponding Authors:
†Corresponding author. E-mail: llnian@hust.edu.cn ‡Corresponding author. E-mail: jtlu@hust.edu.cn
|
Cite this article:
"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛) Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions 2020 Chin. Phys. B 29 120505
|
[1] Imry Y and Landauer R Rev. Mod. Phys. 71 S306 DOI: 10.1103/RevModPhys.71.S3061999 [2] Ojanen T and Jauho A P Phys. Rev. Lett. 100 155902 DOI: 10.1103/PhysRevLett.100.1559022008 [3] Biehs S A, Rousseau E and Greffet J J Phys. Rev. Lett. 105 234301 DOI: 10.1103/PhysRevLett.105.2343012010 [4] Zhang Z Q, Lü J T and Wang J S Phys. Rev. B 97 195450 DOI: 10.1103/PhysRevB.97.1954502018 [5] Ben-Abdallah P and Biehs S A Phys. Rev. Lett. 112 044301 DOI: 10.1103/PhysRevLett.112.0443012014 [6] Rego L G C and Kirczenow G Phys. Rev. Lett. 81 232 DOI: 10.1103/PhysRevLett.81.2321998 [7] Mingo N and Broido D A Phys. Rev. Lett. 95 096105 DOI: 10.1103/PhysRevLett.95.0961052005 [8] Yamamoto T and Watanabe K Phys. Rev. Lett. 96 255503 DOI: 10.1103/PhysRevLett.96.2555032006 [9] Wang J S, Wang J and Zeng N Phys. Rev. B 74 033408 DOI: 10.1103/PhysRevB.74.0334082006 [10] Wang J S, Zeng N, Wang J and Gan C K Phys. Rev. E 75 061128 DOI: 10.1103/PhysRevE.75.0611282007 [11] Wang J S, Wang J and Lü J T Eur. Phys. J. B 62 381 DOI: 10.1140/epjb/e2008-00195-82008 [12] Ruokola T, Ojanen T and Jauho A P Phys. Rev. B 79 144306 DOI: 10.1103/PhysRevB.79.1443062009 [13] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B Rev. Mod. Phys. 84 1045 DOI: 10.1103/RevModPhys.84.10452012 [14] Taylor E and Segal D Phys. Rev. Lett. 114 220401 DOI: 10.1103/PhysRevLett.114.2204012015 [15] Wang C H and Taylor J M Phys. Rev. B 94 155437 DOI: 10.1103/PhysRevB.94.1554372016 [16] Wang B, Wang J, Wang J and Xing D Y Phys. Rev. B 69 174403 DOI: 10.1103/PhysRevB.69.1744032004 [17] Kuhnke K, Gro\sse C, Merino P and Kern K Chem. Rev. 117 5174 DOI: 10.1021/acs.chemrev.6b006452017 [18] Galperin M Chem. Soc. Rev. 46 4000 DOI: 10.1039/C7CS00067G2017 [19] Schneider N L, Schull G and Berndt R Phys. Rev. Lett. 105 026601 DOI: 10.1103/PhysRevLett.105.0266012010 [20] Schneider N L, Lü J T, Brandbyge M and Berndt R Phys. Rev. Lett. 109 186601 DOI: 10.1103/PhysRevLett.109.1866012012 [21] Huang Z, Chen F, D'agosta R, Bennett P A, Di Ventra M and Tao N Nat. Nanotechnol. 2 698 DOI: 10.1038/nnano.2007.3452007 [22] Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O and Selzer Y Nat. Nanotechnol. 3 727 DOI: 10.1038/nnano.2008.3042008 [23] Lü J T, Christensen R B, Wang J S, Hedegård P and Brandbyge M Phys. Rev. Lett. 114 096801 DOI: 10.1103/PhysRevLett.114.0968012015 [24] Härtle R and Thoss M Phys. Rev. B 83 115414 DOI: 10.1103/PhysRevB.83.1154142011 [25] Härtle R and Thoss M Phys. Rev. B 83 125419 DOI: 10.1103/PhysRevB.83.1254192011 [26] Härtle R, Schinabeck C, Kulkarni M, Gelbwaser-Klimovsky D, Thoss M and Peskin U Phys. Rev. B 98 081404 DOI: 10.1103/PhysRevB.98.0814042018 [27] Galperin M, Saito K, Balatsky A V and Nitzan A Phys. Rev. B 80 115427 DOI: 10.1103/PhysRevB.80.1154272019 [28] Simine L and Segal D Phys. Chem. Chem. Phys. 14 13820 DOI: 10.1039/c2cp40851a2012 [29] Lykkebo J, Romano G, Gagliardi A, Pecchia A and Solomon G C J. Chem. Phys. 144 114310 DOI: 10.1063/1.49435782016 [30] Zhu L, Fiorino A, Thompson D, Mittapally R, Meyhofer E and Reddy P Nature 566 239 DOI: 10.1038/s41586-019-0918-82019 [31] Head-Gordon M and Tully J C J. Chem. Phys. 103 10137 DOI: 10.1063/1.4699151995 [32] Dou W and Subotnik J E J. Chem. Phys. 148 230901 DOI: 10.1063/1.50354122018 [33] Paulsson M, Frederiksen T and Brandbyge M Phys. Rev. B 72 201101 DOI: 10.1103/PhysRevB.72.2011012005 [34] Lü J T, Brandbyge M, Hedegård P, Todorov T N and Dundas D Phys. Rev. B 85 245444 DOI: 10.1103/PhysRevB.85.2454442012 [35] Lü J T, Wang J S, Hedegård P and Brandbyge M Phys. Rev. B 93 205404 DOI: 10.1103/PhysRevB.93.2054042016 [36] Nitzan A and Galperin M J. Phys. Chem. Lett. 9 4886 DOI: 10.1021/acs.jpclett.8b018862018 [37] Lü J T and Wang J S Phys. Rev. B 76 165418 DOI: 10.1103/PhysRevB.76.1654182007 [38] Zhang L, Lü J T, Wang J S and B.Li B J. Phys.: Condens. Matt. 25 445801 DOI: 10.1088/0953-8984/25/44/4458012013 [39] Ren J and Zhu J X Phys. Rev. B 87 241412 DOI: 10.1103/PhysRevB.87.2414122013 [40] Entin-Wohlman O, Imry Y and Aharony A Phys. Rev. B 82 115314 DOI: 10.1103/PhysRevB.82.1153142010 [41] Sánchez R and Büttiker M Phys. Rev. B 83 085428 DOI: 10.1103/PhysRevB.83.0854282011 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|