Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 120505    DOI: 10.1088/1674-1056/abb3ee
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions

Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊),† and Jing-Tao Lü(吕京涛)‡
School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  We show that a current-carrying coherent electron conductor can be treated as an effective bosonic energy reservoir involving different types of electron-hole pair excitations. For weak electron-boson coupling, hybrid energy transport between nonequilibrium electrons and bosons can be described by a Landauer-like formula. This allows for unified account of a variety of heat transport problems in hybrid electron-boson systems. As applications, we study the non-reciprocal heat transport between electrons and bosons, thermoelectric current from a cold-spot, and electronic cooling of the bosons. Our unified framework provides an intuitive way of understanding hybrid energy transport between electrons and bosons in their weak coupling limit. It opens the way of nonequilibrium reservoir engineering for efficient energy control between different quasi-particles at the nanoscale.
Keywords:  electron-hole pair      hybrid energy transport      nanojunction      electron-phonon interaction  
Received:  22 June 2020      Revised:  27 August 2020      Accepted manuscript online:  01 September 2020
PACS:  05.70.Ln (Nonequilibrium and irreversible thermodynamics)  
  63.20.kd (Phonon-electron interactions)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  85.65.+h (Molecular electronic devices)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403501), the National Natural Science Foundation of China (Grant No. 21873033), and the Program for HUST Academic Frontier Youth Team.
Corresponding Authors:  Corresponding author. E-mail: llnian@hust.edu.cn Corresponding author. E-mail: jtlu@hust.edu.cn   

Cite this article: 

"Bing-Zhong Hu(胡柄中), Lei-Lei Nian(年磊磊), and Jing-Tao Lü(吕京涛) Nonequilibrium reservoir engineering of a biased coherent conductor for hybrid energy transport in nanojunctions 2020 Chin. Phys. B 29 120505

[1] Imry Y and Landauer R Rev. Mod. Phys. 71 S306 DOI: 10.1103/RevModPhys.71.S3061999
[2] Ojanen T and Jauho A P Phys. Rev. Lett. 100 155902 DOI: 10.1103/PhysRevLett.100.1559022008
[3] Biehs S A, Rousseau E and Greffet J J Phys. Rev. Lett. 105 234301 DOI: 10.1103/PhysRevLett.105.2343012010
[4] Zhang Z Q, Lü J T and Wang J S Phys. Rev. B 97 195450 DOI: 10.1103/PhysRevB.97.1954502018
[5] Ben-Abdallah P and Biehs S A Phys. Rev. Lett. 112 044301 DOI: 10.1103/PhysRevLett.112.0443012014
[6] Rego L G C and Kirczenow G Phys. Rev. Lett. 81 232 DOI: 10.1103/PhysRevLett.81.2321998
[7] Mingo N and Broido D A Phys. Rev. Lett. 95 096105 DOI: 10.1103/PhysRevLett.95.0961052005
[8] Yamamoto T and Watanabe K Phys. Rev. Lett. 96 255503 DOI: 10.1103/PhysRevLett.96.2555032006
[9] Wang J S, Wang J and Zeng N Phys. Rev. B 74 033408 DOI: 10.1103/PhysRevB.74.0334082006
[10] Wang J S, Zeng N, Wang J and Gan C K Phys. Rev. E 75 061128 DOI: 10.1103/PhysRevE.75.0611282007
[11] Wang J S, Wang J and Lü J T Eur. Phys. J. B 62 381 DOI: 10.1140/epjb/e2008-00195-82008
[12] Ruokola T, Ojanen T and Jauho A P Phys. Rev. B 79 144306 DOI: 10.1103/PhysRevB.79.1443062009
[13] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B Rev. Mod. Phys. 84 1045 DOI: 10.1103/RevModPhys.84.10452012
[14] Taylor E and Segal D Phys. Rev. Lett. 114 220401 DOI: 10.1103/PhysRevLett.114.2204012015
[15] Wang C H and Taylor J M Phys. Rev. B 94 155437 DOI: 10.1103/PhysRevB.94.1554372016
[16] Wang B, Wang J, Wang J and Xing D Y Phys. Rev. B 69 174403 DOI: 10.1103/PhysRevB.69.1744032004
[17] Kuhnke K, Gro\sse C, Merino P and Kern K Chem. Rev. 117 5174 DOI: 10.1021/acs.chemrev.6b006452017
[18] Galperin M Chem. Soc. Rev. 46 4000 DOI: 10.1039/C7CS00067G2017
[19] Schneider N L, Schull G and Berndt R Phys. Rev. Lett. 105 026601 DOI: 10.1103/PhysRevLett.105.0266012010
[20] Schneider N L, Lü J T, Brandbyge M and Berndt R Phys. Rev. Lett. 109 186601 DOI: 10.1103/PhysRevLett.109.1866012012
[21] Huang Z, Chen F, D'agosta R, Bennett P A, Di Ventra M and Tao N Nat. Nanotechnol. 2 698 DOI: 10.1038/nnano.2007.3452007
[22] Ioffe Z, Shamai T, Ophir A, Noy G, Yutsis I, Kfir K, Cheshnovsky O and Selzer Y Nat. Nanotechnol. 3 727 DOI: 10.1038/nnano.2008.3042008
[23] Lü J T, Christensen R B, Wang J S, Hedegård P and Brandbyge M Phys. Rev. Lett. 114 096801 DOI: 10.1103/PhysRevLett.114.0968012015
[24] Härtle R and Thoss M Phys. Rev. B 83 115414 DOI: 10.1103/PhysRevB.83.1154142011
[25] Härtle R and Thoss M Phys. Rev. B 83 125419 DOI: 10.1103/PhysRevB.83.1254192011
[26] Härtle R, Schinabeck C, Kulkarni M, Gelbwaser-Klimovsky D, Thoss M and Peskin U Phys. Rev. B 98 081404 DOI: 10.1103/PhysRevB.98.0814042018
[27] Galperin M, Saito K, Balatsky A V and Nitzan A Phys. Rev. B 80 115427 DOI: 10.1103/PhysRevB.80.1154272019
[28] Simine L and Segal D Phys. Chem. Chem. Phys. 14 13820 DOI: 10.1039/c2cp40851a2012
[29] Lykkebo J, Romano G, Gagliardi A, Pecchia A and Solomon G C J. Chem. Phys. 144 114310 DOI: 10.1063/1.49435782016
[30] Zhu L, Fiorino A, Thompson D, Mittapally R, Meyhofer E and Reddy P Nature 566 239 DOI: 10.1038/s41586-019-0918-82019
[31] Head-Gordon M and Tully J C J. Chem. Phys. 103 10137 DOI: 10.1063/1.4699151995
[32] Dou W and Subotnik J E J. Chem. Phys. 148 230901 DOI: 10.1063/1.50354122018
[33] Paulsson M, Frederiksen T and Brandbyge M Phys. Rev. B 72 201101 DOI: 10.1103/PhysRevB.72.2011012005
[34] Lü J T, Brandbyge M, Hedegård P, Todorov T N and Dundas D Phys. Rev. B 85 245444 DOI: 10.1103/PhysRevB.85.2454442012
[35] Lü J T, Wang J S, Hedegård P and Brandbyge M Phys. Rev. B 93 205404 DOI: 10.1103/PhysRevB.93.2054042016
[36] Nitzan A and Galperin M J. Phys. Chem. Lett. 9 4886 DOI: 10.1021/acs.jpclett.8b018862018
[37] Lü J T and Wang J S Phys. Rev. B 76 165418 DOI: 10.1103/PhysRevB.76.1654182007
[38] Zhang L, Lü J T, Wang J S and B.Li B J. Phys.: Condens. Matt. 25 445801 DOI: 10.1088/0953-8984/25/44/4458012013
[39] Ren J and Zhu J X Phys. Rev. B 87 241412 DOI: 10.1103/PhysRevB.87.2414122013
[40] Entin-Wohlman O, Imry Y and Aharony A Phys. Rev. B 82 115314 DOI: 10.1103/PhysRevB.82.1153142010
[41] Sánchez R and Büttiker M Phys. Rev. B 83 085428 DOI: 10.1103/PhysRevB.83.0854282011
[1] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[2] Group velocity matters for accurate prediction of phonon-limited carrier mobility
Qiao-Lin Yang(杨巧林), Hui-Xiong Deng(邓惠雄), Su-Huai Wei(魏苏淮), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2021, 30(8): 087201.
[3] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[4] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[5] Crossover of large to small radius polaron in ionic crystals
M I Umo. Chin. Phys. B, 2016, 25(11): 117104.
[6] Tight-binding electron-phonon coupling and band renormalization in graphene
Zhang De-Sheng (张德生), Kang Guang-Zhen (康广震), Li Jun (李俊). Chin. Phys. B, 2015, 24(1): 017301.
[7] Phonon-dependent transport through a serially coupled double quantum dot system
M. Bagheri Tagani, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(5): 057302.
[8] The effect of interface hopping on inelastic scattering of oppositely charged polarons in polymers
Di Bing (邸冰), Wang Ya-Dong (王亚东), Zhang Ya-Lin (张亚琳), An Zhong (安忠). Chin. Phys. B, 2013, 22(6): 067103.
[9] Dynamical study on charge injection and transport in a metal/polythiophene/metal structure
Li Dong-Mei(李冬梅), Liu Xiao-Jing(刘晓静), Li Yuan(李元), Li Hai-Hong(李海宏), Hu Gui-chao(胡贵超), Gao Kun(高琨), Liu De-Sheng(刘德胜), and Xie Shi-Jie(解士杰). Chin. Phys. B, 2008, 17(8): 3067-3076.
[10] On the possibility of self-trapping transition of acoustic polarons in two dimensions
Hou Jun-Hua(侯俊华) and Liang Xi-Xia(梁希侠). Chin. Phys. B, 2007, 16(10): 3059-3066.
[11] Effect of electron-phonon interactions on dynamical localization of semiconductor superlattices
Wang Zhi-Gang (王志刚), Duan Su-Qing (段素青), Zhao Xian-Geng (赵宪庚). Chin. Phys. B, 2005, 14(6): 1232-1237.
[12] Ac response of a coupled double quantum dot
Xu Jie (徐婕), Shangguan W. Z., Zhan Shi-Chang (詹士昌). Chin. Phys. B, 2005, 14(10): 2093-2099.
[13] Enhanced Raman scattering from nano-SnO2 grains
Ding Shuo (丁硕), Liu Jin-Quan (刘金全), Liu Yu-Long (刘玉龙). Chin. Phys. B, 2004, 13(11): 1854-1856.
[14] Optical vibration modes and electron-phonon interaction in ternary mixed crystals of polar semiconductors
Liang Xi-Xia (梁希侠), Ban Shi-Liang (班士良). Chin. Phys. B, 2004, 13(1): 71-81.
[15] Electron self-energy and effective mass in a single heterostructure
Hua Xiu-Kun (花修坤), Wu Yin-Zhong (吴银忠), Li Zhen-Ya (李振亚). Chin. Phys. B, 2003, 12(11): 1296-1300.
No Suggested Reading articles found!