Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 124206    DOI: 10.1088/1674-1056/abab7c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach

Xuping Shao(邵旭萍)†
School of Science, Nantong University, Nantong 226019, China
Abstract  Taking into account the dephasing process in the realistic atomic ensemble, we theoretically study the generation of atomic spin squeezing via atomic coherence induced by the coupling and probe fields. Using the Heisenberg-Langevin approach, we find that the perfect spin squeezing in the X component can be obtained while the coupling and probe fields produce the maximum coherence between the ground state sublevels 1 and 2. Moreover, the degree of atomic spin squeezing in the X component can be strengthened with the increasing atomic density and/or Rabi frequency of the mixing field. The theoretical results provide a proof-of-principle demonstration of generating the atomic spin squeezing via quantum coherence in the realistic atomic ensemble which may find potential applications in quantum information processing and quantum networks.
Keywords:  atomic spin squeezing      quantum coherence  
Received:  17 May 2020      Revised:  21 July 2020      Accepted manuscript online:  01 August 2020
PACS:  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Dv (Quantum state engineering and measurements)  
Corresponding Authors:  Corresponding author. E-mail: xuping1115@ntu.edu.cn   

Cite this article: 

Xuping Shao(邵旭萍) Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach 2020 Chin. Phys. B 29 124206

[1] Kitagawa M and Ueda M Phys. Rev. A 47 5138 DOI: 10.1103/PhysRevA.47.51381993
[2] Sørensen A, Duan L M, Cirac J I and Zoller P Nature 409 63 DOI: 10.1038/350510382001
[3] Ma J, Wang X G, Sun C P and Nori F Phys. Rep. 509 89 DOI: 10.1016/j.physrep.2011.08.0032011
[4] Gühne O and Tóth G Phys. Rep. 474 1 DOI: 10.1016/j.physrep.2009.02.0042009
[5] Wineland D J, Bollinger J J, Itano W M and Heinzen D J Phys. Rev. A 50 67 DOI: 10.1103/PhysRevA.50.671994
[6] Cronin A D, Schmiedmayer J and Pritchard D E Rev. Mod. Phys. 81 1051 DOI: 10.1103/RevModPhys.81.10512009
[7] Kuzmich A, Bigelow N P and Mandel L Europhys. Lett. 42 481 DOI: 10.1209/epl/i1998-00277-91998
[8] Kuzmich A, Mandel L and Bigelow N P Phys. Rev. Lett. 85 1594 DOI: 10.1103/PhysRevLett.85.15942000
[9] Kuzmich A, M?lmer K and Polzik E S Phys. Rev. Lett. 79 4782 DOI: 10.1103/PhysRevLett.79.47821997
[10] Zhang J X, Cai J, Bai Y F, Gao J R and Zhu S Y Phys. Rev. A 76 033814 DOI: 10.1103/PhysRevA.76.0338142007
[11] Hald J, Sørensen J L, Schori C and Polzik E S Phys. Rev. Lett. 83 1319 DOI: 10.1103/PhysRevLett.83.13191999
[12] Dantan A and Pinard M Phys. Rev. A 69 043810 DOI: 10.1103/PhysRevA.69.0438102004
[13] Dantan A, Bramati A and Pinard M Phys. Rev. A 71 043801 DOI: 10.1103/PhysRevA.71.0438012005
[14] Dantan A, Pinard M, Josse V, Nayak N and Berman P R Phys. Rev. A 67 045801 DOI: 10.1103/PhysRevA.67.0458012003
[15] Vernac L, Pinard M and Giacobino E Phys. Rev. A 62 063812 DOI: 10.1103/PhysRevA.62.0638122000
[16] Vernac L, Pinard M, Josse V and Giacobino E Eur. Phys. J. D 18 129 DOI: 10.1140/e10053-002-0014-72002
[17] Hammerer K, M?lmer K, Polzik E S and Cirac J I Phys. Rev. A 70 044304 DOI: 10.1103/PhysRevA.70.0443042004
[18] Takeuchi M, Ichihara S, Takano T, Kumakura M, Yabuzaki T and Takahashi Y Phys. Rev. Lett. 94 023003 DOI: 10.1103/PhysRevLett.94.0230032005
[19] Boyer V, Marino A M, Pooser R C and Lett P D Science 321 544 DOI: 10.1126/science.11582752008
[20] Duan L M, Lukin M D, Cirac J I and Zoller P Nature 414 413 DOI: 10.1038/351065002001
[21] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M and Kimble H J Nature 423 731 DOI: 10.1038/nature017142003
[22] Van Der Wal C H, Eisaman M D, Andre A, Walsworth R L, Phillips D F, Zibrov A S and Lukin M D Science 301 196 DOI: 10.1126/science.10859462003
[23] Yang X H and Xiao M Sci. Rep. 5 13609 DOI: 10.1038/srep136092015
[24] Yang X H, Zhou Y Y and Xiao M Sci. Rep. 3 3479 DOI: 10.1038/srep034792013
[25] Yang X H, Xue B L, Zhang J X and Zhu S Y Sci. Rep. 4 6629 DOI: 10.1038/srep066292014
[26] Yang X H, Zhou Y Y and Xiao M Phys. Rev. A 85 052307 DOI: 10.1103/PhysRevA.85.0523072012
[27] Shao X P, Ling Y, Yang X H and Xiao M Phys. Rev. A 93 063825 DOI: 10.1103/PhysRevA.93.0638252016
[28] Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X and Zhu S Y Phys. Rev. A 89 033813 DOI: 10.1103/PhysRevA.89.0338132014
[29] Fleischhauer M and Richter T Phys. Rev. A 51 2430 DOI: 10.1103/PhysRevA.51.24301995
[30] Mccormick C F, Boyer V, Arimondo E and Lett P D Opt. Lett. 32 178 DOI: 10.1364/OL.32.0001782007
[31] Mccormick C F, Marino A M, Boyer V and Lett P D Phys. Rev. A 78 043816 DOI: 10.1103/PhysRevA.78.0438162008
[32] Zhong W, Liu J, Ma J and Wang X G Chin. Phys. B 23 060302 DOI: 10.1088/1674-1056/23/6/0603022014
[33] Yang X H, Shang J, Xue B L, Zhou Y Y and Xiao M Opt. Express 22 12563 DOI: 10.1364/OE.22.0125632014
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[4] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[5] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[6] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[7] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[8] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[9] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[10] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[11] Decoherence for a two-qubit system in a spin-chain environment
Yang Yang(杨阳), An-Min Wang(王安民), Lian-Zhen Cao(曹连振), Jia-Qiang Zhao(赵加强), Huai-Xin Lu(逯怀新). Chin. Phys. B, 2018, 27(9): 090302.
[12] Robustness of coherence between two quantum dots mediated by Majorana fermions
Liang Chen(陈亮), Ye-Qi Zhang(张业奇), Rong-Sheng Han(韩榕生). Chin. Phys. B, 2018, 27(7): 077102.
[13] Classical-driving-assisted coherence dynamics and its conservation
De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(6): 060304.
[14] The heat and work of quantum thermodynamic processes with quantum coherence
Shanhe Su(苏山河), Jinfu Chen(陈劲夫), Yuhan Ma(马宇翰), Jincan Chen(陈金灿), Changpu Sun(孙昌璞). Chin. Phys. B, 2018, 27(6): 060502.
[15] Comparative investigation of freezing phenomena for quantum coherence and correlations
Lian-Wu Yang(杨连武), Wei Han(韩伟), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2018, 27(4): 040302.
No Suggested Reading articles found!