ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach |
Xuping Shao(邵旭萍)† |
School of Science, Nantong University, Nantong 226019, China |
|
|
Abstract Taking into account the dephasing process in the realistic atomic ensemble, we theoretically study the generation of atomic spin squeezing via atomic coherence induced by the coupling and probe fields. Using the Heisenberg-Langevin approach, we find that the perfect spin squeezing in the X component can be obtained while the coupling and probe fields produce the maximum coherence between the ground state sublevels 1 and 2. Moreover, the degree of atomic spin squeezing in the X component can be strengthened with the increasing atomic density and/or Rabi frequency of the mixing field. The theoretical results provide a proof-of-principle demonstration of generating the atomic spin squeezing via quantum coherence in the realistic atomic ensemble which may find potential applications in quantum information processing and quantum networks.
|
Received: 17 May 2020
Revised: 21 July 2020
Accepted manuscript online: 01 August 2020
|
PACS:
|
42.50.Lc
|
(Quantum fluctuations, quantum noise, and quantum jumps)
|
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Dv
|
(Quantum state engineering and measurements)
|
|
Corresponding Authors:
†Corresponding author. E-mail: xuping1115@ntu.edu.cn
|
Cite this article:
Xuping Shao(邵旭萍) Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach 2020 Chin. Phys. B 29 124206
|
[1] Kitagawa M and Ueda M Phys. Rev. A 47 5138 DOI: 10.1103/PhysRevA.47.51381993 [2] Sørensen A, Duan L M, Cirac J I and Zoller P Nature 409 63 DOI: 10.1038/350510382001 [3] Ma J, Wang X G, Sun C P and Nori F Phys. Rep. 509 89 DOI: 10.1016/j.physrep.2011.08.0032011 [4] Gühne O and Tóth G Phys. Rep. 474 1 DOI: 10.1016/j.physrep.2009.02.0042009 [5] Wineland D J, Bollinger J J, Itano W M and Heinzen D J Phys. Rev. A 50 67 DOI: 10.1103/PhysRevA.50.671994 [6] Cronin A D, Schmiedmayer J and Pritchard D E Rev. Mod. Phys. 81 1051 DOI: 10.1103/RevModPhys.81.10512009 [7] Kuzmich A, Bigelow N P and Mandel L Europhys. Lett. 42 481 DOI: 10.1209/epl/i1998-00277-91998 [8] Kuzmich A, Mandel L and Bigelow N P Phys. Rev. Lett. 85 1594 DOI: 10.1103/PhysRevLett.85.15942000 [9] Kuzmich A, M?lmer K and Polzik E S Phys. Rev. Lett. 79 4782 DOI: 10.1103/PhysRevLett.79.47821997 [10] Zhang J X, Cai J, Bai Y F, Gao J R and Zhu S Y Phys. Rev. A 76 033814 DOI: 10.1103/PhysRevA.76.0338142007 [11] Hald J, Sørensen J L, Schori C and Polzik E S Phys. Rev. Lett. 83 1319 DOI: 10.1103/PhysRevLett.83.13191999 [12] Dantan A and Pinard M Phys. Rev. A 69 043810 DOI: 10.1103/PhysRevA.69.0438102004 [13] Dantan A, Bramati A and Pinard M Phys. Rev. A 71 043801 DOI: 10.1103/PhysRevA.71.0438012005 [14] Dantan A, Pinard M, Josse V, Nayak N and Berman P R Phys. Rev. A 67 045801 DOI: 10.1103/PhysRevA.67.0458012003 [15] Vernac L, Pinard M and Giacobino E Phys. Rev. A 62 063812 DOI: 10.1103/PhysRevA.62.0638122000 [16] Vernac L, Pinard M, Josse V and Giacobino E Eur. Phys. J. D 18 129 DOI: 10.1140/e10053-002-0014-72002 [17] Hammerer K, M?lmer K, Polzik E S and Cirac J I Phys. Rev. A 70 044304 DOI: 10.1103/PhysRevA.70.0443042004 [18] Takeuchi M, Ichihara S, Takano T, Kumakura M, Yabuzaki T and Takahashi Y Phys. Rev. Lett. 94 023003 DOI: 10.1103/PhysRevLett.94.0230032005 [19] Boyer V, Marino A M, Pooser R C and Lett P D Science 321 544 DOI: 10.1126/science.11582752008 [20] Duan L M, Lukin M D, Cirac J I and Zoller P Nature 414 413 DOI: 10.1038/351065002001 [21] Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M and Kimble H J Nature 423 731 DOI: 10.1038/nature017142003 [22] Van Der Wal C H, Eisaman M D, Andre A, Walsworth R L, Phillips D F, Zibrov A S and Lukin M D Science 301 196 DOI: 10.1126/science.10859462003 [23] Yang X H and Xiao M Sci. Rep. 5 13609 DOI: 10.1038/srep136092015 [24] Yang X H, Zhou Y Y and Xiao M Sci. Rep. 3 3479 DOI: 10.1038/srep034792013 [25] Yang X H, Xue B L, Zhang J X and Zhu S Y Sci. Rep. 4 6629 DOI: 10.1038/srep066292014 [26] Yang X H, Zhou Y Y and Xiao M Phys. Rev. A 85 052307 DOI: 10.1103/PhysRevA.85.0523072012 [27] Shao X P, Ling Y, Yang X H and Xiao M Phys. Rev. A 93 063825 DOI: 10.1103/PhysRevA.93.0638252016 [28] Guo M J, Zhou H T, Wang D, Gao J R, Zhang J X and Zhu S Y Phys. Rev. A 89 033813 DOI: 10.1103/PhysRevA.89.0338132014 [29] Fleischhauer M and Richter T Phys. Rev. A 51 2430 DOI: 10.1103/PhysRevA.51.24301995 [30] Mccormick C F, Boyer V, Arimondo E and Lett P D Opt. Lett. 32 178 DOI: 10.1364/OL.32.0001782007 [31] Mccormick C F, Marino A M, Boyer V and Lett P D Phys. Rev. A 78 043816 DOI: 10.1103/PhysRevA.78.0438162008 [32] Zhong W, Liu J, Ma J and Wang X G Chin. Phys. B 23 060302 DOI: 10.1088/1674-1056/23/6/0603022014 [33] Yang X H, Shang J, Xue B L, Zhou Y Y and Xiao M Opt. Express 22 12563 DOI: 10.1364/OE.22.0125632014 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|