CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system |
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)† |
1 School of Mechanics and Photoelectric Physics, Anhui University of Science and Technology, Huainan 232001, China |
|
|
Abstract We present a room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system with the microwave pump–probe technique and the spin readout technique, which includes a single spin of nitrogen–vacancy (NV) center in diamond and a nanomechanical cantilever. The resonance frequency of the nanoresonator can be measured with the nolinear Kerr spectrum, and the parameters that influence the nolinear Kerr spectrum are also investigated. Further, according to the relationship between frequency shifts and variable mass attached on the nanoresonator, this system can also be used to detect the mass of DNA molecules with the nolinear Kerr spectrum. Benefiting from the single spin of the NV center in diamond has a long coherence time at 300 K, the hybrid system can realize room temperature mass sensor, and the mass response rate can reach 2600 zg/Hz.
|
Received: 30 June 2020
Revised: 10 August 2020
Accepted manuscript online: 13 August 2020
|
PACS:
|
78.47.jh
|
(Coherent nonlinear optical spectroscopy)
|
|
63.22.-m
|
(Phonons or vibrational states in low-dimensional structures and nanoscale materials)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
Corresponding Authors:
†Corresponding author. E-mail: chenphysics@126.com
|
About author: †Corresponding author. E-mail: chenphysics@126.com * Project supported by the National Natural Science Foundation of China (Grant Nos. 11647001 and 11804004) and Anhui Provincial Natural Science Foundation (Grant No. 1708085QA11). |
Cite this article:
Jian-Yong Yang(杨建勇) and Hua-Jun Chen(陈华俊)† Room temperature nonlinear mass sensing based on a hybrid spin-nanoresonator system 2020 Chin. Phys. B 29 107801
|
[1] |
|
[2] |
Okamoto H, Gourgout A, Chang C Y, Onomitsu K, Mahboob I, Chang E Y, Yamaguchi H 2013 Nat. Phys. 9 480 DOI: 10.1038/nphys2665
|
[3] |
Kurizki G, Bertet P, Kubo Y, Mølmer K, Petrosyan D, Rabl P, Schmiedmayer J 2015 Proc. Natl. Acad. Sci. USA 112 3866 DOI: 10.1073/pnas.1419326112
|
[4] |
|
[5] |
|
[6] |
|
[7] |
Moser J, Güttinger J, Eichler A, Esplandiu M J, Liu D E, Dykman M I, Bachtold A 2013 Nat. Nanotechnol. 8 493 DOI: 10.1038/nnano.2013.97
|
[8] |
|
[9] |
Forstner S, Prams S, Knittel J, van Ooijen E D, Swaim J D, Harris G I, Szorkovszky A, Bowen W P, Rubinsztein-Dunlop H 2012 Phys. Rev. Lett. 108 120801 DOI: 10.1103/PhysRevLett.108.120801
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
Verbridge Scott S, Craighead H G, Parpia J M 2008 Appl. Phys. Lett. 92 013112 DOI: 10.1063/1.2822406
|
[15] |
|
[16] |
|
[17] |
|
[18] |
Bennett S D, Kolkowitz S, Unterreithmeier Q P, Rabl P, BleszynskiJayich A C, Harris J G E, Lukin M D 2012 New J. Phys. 14 125004 DOI: 10.1088/1367-2630/14/12/125004
|
[19] |
Kolkowitz S, BleszynskiJayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G E, Lukin M D 2012 Science 335 1603 DOI: 10.1126/science.1216821
|
[20] |
|
[21] |
|
[22] |
Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383 DOI: 10.1038/nmat2420
|
[23] |
Arcizet O, Jacques V, Siria A, Poncharal P, Vincent P, Seidelin S 2011 Nat. Phys. 7 879 DOI: 10.1038/nphys2070
|
[24] |
Mizukami S, Sajitha E P, Watanabe D, Wu F, Miyazaki T, Naganuma H, Oogane M, Ando Y 2010 Appl. Phys. Lett. 96 152502 DOI: 10.1063/1.3396983
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
Liu G Q, Xing J, Ma W L, Wang P, Li C H, Po H C, Zhang Y R, Fan H, Liu R B, Pan X Y 2017 Phys. Rev. Lett. 118 150504 DOI: 10.1103/PhysRevLett.118.150504
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
Yao P J, Pathak P K, Illes E, Münch S, Reitzenstein S, Franeck P, Löffler A, Heindel T, Höfling S, Worschech L, Forchel A 2010 Phys. Rev. B 81 033309 DOI: 10.1103/PhysRevB.81.033309
|
[39] |
|
[40] |
Neukirch L P, Gieseler J, Quidant R, Novotny L, Nick Vamivakas A 2013 Opt. Lett. 38 2976 DOI: 10.1364/OL.38.002976
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L, Sun B Q 2015 Chin. Phys. Lett. 32 107804 DOI: 10.1088/0256-307X/32/10/107804
|
[47] |
|
[48] |
|
[49] |
|
[50] |
Yang J Y, Chen H J 2019 Acta Phys. Sin. 68 246302 in Chinese
|
[51] |
Rabl P, Kolkowitz S J, Koppens F H L, Harris J G E, Zoller P, Lukin M D 2010 Nat. Phys. 6 602 DOI: 10.1038/nphys1679
|
[52] |
Boyd R W 1992 Nonlinear Optics California San Diego 225
|
[53] |
|
[54] |
|
[55] |
Scully M O, Zubairy M S 1997 Quantum Optics Cambridge Cambridge University Press 513 515
|
[56] |
|
[57] |
Jiang C, Chen B, Li J J, Zhu K D 2011 J. Appl. Phys. 110 083107 DOI: 10.1063/1.3654023
|
[58] |
|
[59] |
|
[60] |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|