Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097801    DOI: 10.1088/1674-1056/ab969e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Computation and analysis of light emission in two-bubble sonoluminescence

Jin-Fu Liang(梁金福)1, Xue-You Wu(吴学由)1, Yu An(安宇)2, Wei-Zhong Chen(陈伟中)3, Jun Wang(王军)4
1 School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China;
2 Department of Physics, Tsinghua University, Beijing 100084, China;
3 Institution of Acoustics, Nanjing University, Nanjing 210093, China;
4 School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025, China
Abstract  We perform a computational simulation of light emissions from two sonoluminescent bubbles in water. Our simulation includes the radii of two bubbles, radiation acoustic pressures, and light emission spectra by numerically solving the pulsing equations of a two-bubble system and the equations of gas dynamics. The simulation results demonstrate that the motion of each bubble in the two-bubble system is restrained because of the radiation acoustic pressures from the other pulsing bubble. The restrained oscillation of a bubble with a small ambient radius is stronger than that of a bubble with a large ambient radius under the same driving acoustic pressure. This effect increases when the distance between the two bubbles decreases. When compared to single-bubble sonoluminescence, the interaction between two bubbles leads to generation of different spectral characteristics.
Keywords:  two-bubble sonoluminescence      radiation acoustic pressure      spectra  
Received:  11 April 2020      Revised:  11 May 2020      Accepted manuscript online:  27 May 2020
PACS:  78.60.Mq (Sonoluminescence, triboluminescence)  
  47.55.dd (Bubble dynamics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11864007 and 11564006) and the Science and Technology Planning Project of Guizhou Province of China (Grant No. [2018]5769).
Corresponding Authors:  Jin-Fu Liang     E-mail:  liang.shi2007@163.com

Cite this article: 

Jin-Fu Liang(梁金福), Xue-You Wu(吴学由), Yu An(安宇), Wei-Zhong Chen(陈伟中), Jun Wang(王军) Computation and analysis of light emission in two-bubble sonoluminescence 2020 Chin. Phys. B 29 097801

[1] Putterman S J and Weninger K R 2000 Annu. Rev. Fluid Mech. 32 445
[2] Suslick K S, Eddingsaas N C, Flannigan D J, Hopkins S D and Xu H 2018 Acc. Chem. Res. 51 2169
[3] Brenner M P, Hilgenfeldt S and Lohse D 2002 Rev. Mod. Phys. 74 425
[4] Suslick K S and Flannigan D J 2008 Annu. Rev. Phys. Chem. 59 659
[5] Gaitan D F, Crum L A, Church C C and Roy R A 1992 J. Acoust. Soc. Am. 91 3166
[6] Frenzel H and Schultes H 1934 Z. Phys. Chem. B 27 421
[7] An Y 2011 Phys. Rev. E 83 066313
[8] Neppiras E A 1980 Phys. Rep. 61 159
[9] Flannigan D J and Suslick K S 2012 J. Phys. Chem. Lett. 3 2401
[10] Bjerknes V 1906 Fields of Force (New York: Columbia University Press)
[11] Crum L 1975 J. Acoust. Soc. Am. 57 1363
[12] Oguz H N and Prosperetti A 1990 J. Fluids Mech. 218 143
[13] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[14] Doinikov A A 1999 J. Acoust. Soc. Am. 106 3305
[15] Doinikov A A 2002 J. Acoust. Soc. Am. 111 1602
[16] Barbat T, Ashgriz N and Liu C S 1999 J. Fluid Mech. 389 137
[17] Rasoul S B, Nastaran R, Homa E and Mona M 2010 Phys. Rev. E 82 016316
[18] Eruihara K, Hay T A, Ilinskii Y, Zabolotskaya E and Hamilton M 2011 J. Acoust. Soc. Am. 130 3357
[19] Liang J, Chen W Z, Shao W H and Qi S B 2012 Chin. Phys. Lett. 29 074701
[20] Liang J, Wang X, Yang J and Gong L 2017 Ultrasonics 75 58
[21] Pu Z, Zhang W, Shi K R, Zhang J H and Wu Y L 2005 J. Tsinghua University 45 1450 (in Chinese)
[22] Ross D 1976 Mechanics of Under Water Noise (New York: Pergamon Press)
[23] An Y 2006 Phys. Rev. E 74 026304
[24] An Y and Li C 2008 Phys. Rev. E 78 046313
[25] An Y and Li C 2009 Phys. Rev. E 80 046320
[26] Liang J and An Y 2017 Phys. Rev. E 96 063118
[27] Liang J, An Y and Chen W 2019 Ultrason. Sonochem. 58 104688
[28] Pflieger R, Brau H P and Nikitenko S 2010 Chem. Eur. J. 16 11801
[29] Yasui K 2001 Phys. Rev. E 64 016310
[30] Zhang W J and An Y 2015 Chin. Phys. B 24 047802
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Structural evolution-enabled BiFeO3 modulated by strontium doping with enhanced dielectric, optical and superparamagneticproperties by a modified sol-gel method
Sharon V S, Veena Gopalan E, and Malini K A. Chin. Phys. B, 2023, 32(3): 037504.
[4] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[5] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[6] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[7] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[8] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[9] In-plane optical anisotropy of two-dimensional VOCl single crystal with weak interlayer interaction
Ruijie Wang(王瑞洁), Qilong Cui(崔其龙), Wen Zhu(朱文), Yijie Niu(牛艺杰), Zhanfeng Liu(刘站锋), Lei Zhang(张雷), Xiaojun Wu(武晓君), Shuangming Chen(陈双明), and Li Song(宋礼). Chin. Phys. B, 2022, 31(9): 096802.
[10] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[11] Real non-Hermitian energy spectra without any symmetry
Boxue Zhang(张博学), Qingya Li(李青铔), Xiao Zhang(张笑), and Ching Hua Lee(李庆华). Chin. Phys. B, 2022, 31(7): 070308.
[12] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[13] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[14] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[15] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
No Suggested Reading articles found!