Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 086201    DOI: 10.1088/1674-1056/26/8/086201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique

Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶)
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China
Abstract  

To gain a physical insight into the radiation effect on nanowires (NWs), the time resolved photoluminescence (TRPL) technique is used to investigate the carrier dynamic behaviors in GaAs/AlGaAs core-shell NWs before and after 1-MeV proton irradiation with fluences ranging from 1.0×1012 cm-2 to 3.0×1013 cm-2. It is found that the degradations of spectral peak intensity and minority carrier lifetime show similar trends against irradiation fluence, which is closely related to the displacement defects induced by irradiation. We also find that the proton irradiation-induced defects behave as Shockley-Read-Hall (SRH) recombination center trapping free carriers. Finally, the defect concentration could be estimated through measuring the minority carrier lifetime.

Keywords:  radiation effect      minority carrier lifetime      defect concentration      radiation damage  
Received:  27 February 2017      Revised:  30 April 2017      Accepted manuscript online: 
PACS:  62.23.Hj (Nanowires)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
  61.80.-x (Physical radiation effects, radiation damage)  
  61.80.Jh (Ion radiation effects)  
Corresponding Authors:  Fa-Jun Li     E-mail:  lifajun1201@gmail.com
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶) Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique 2017 Chin. Phys. B 26 086201

[1] Kato T, Susawa H, Hirotani M, Saka T, Ohashi Y, Shichi E and Shibata S 1991 J. Cryst. Growth 107 832
[2] Stettner T, Zimmermann P, Loitsch B, Doblinger M, Regler A, Mayer B, Winnerl J, Matich S, Riedl H, Kaniber M, Abstreiter G, Koblmuller G and Finley J J 2016 Appl. Phys. Lett. 108 011108
[3] Wei W, Liu Y G, Zhang X, Wang Z and Ren X M 2014 Appl. Phys. Lett. 104 223103
[4] Badada B H, Shi T, Jackson H E, Smith L M, Zheng C L, Etheridge J, Gao Q, Tan H H and Jagadish C 2015 Nano Lett. 15 7847
[5] Aberg I, Vescovi G, Asoli D, Naseem U, Gilboy J P, Sundvall C, Dahlgren A, Svensson K E, Anttu N, Bjork M T and Samuelson L 2016 IEEE J. Photovolt. 6 185
[6] Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2013 Appl. Phys. Lett. 103 251109
[7] Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2014 Appl. Phys. Lett. 105 041105
[8] Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 68 31
[9] Mitchell B, Trupke T, Weber J W and Nyhus J 2011 J. Appl. Phys. 109 083111
[10] Marcinkevicius S, Leon R, Cechavicius B, Siegert J, Lobo C, Magness B and Taylor W 2002 Physica B 314 203
[11] Ma L Y, Li Y D, Guo Q, Ai E K, Wang H J, Wang B and Zeng J Z 2015 Acta Phys. Sin. 64 154217 (in Chinese)
[12] Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y and Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese)
[13] Li F J, Tan L Y and Zhou Y P 2014 Appl. Mech. Mater. 556-562 5163
[14] Andrievski R A 2014 Uspekhi Fizicheskikh Nauk 184 1017
[15] Shen T 2008 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 921
[16] Tan H, Williams J, Jagadish C, Burke P and Gal M 1996 Appl. Phys. Lett. 68 2401
[17] Tan H H and Jagadish C 1997 Appl. Phys. Lett. 71 2680
[18] Fu L, Tan H H, Johnston M B, Gal M and Jagadish C 1999 J. Appl. Phys. 85 6786
[19] Hirst L C, Yakes M K, Warner J H, Bennett M F, Schmieder K J, Walters R J and Jenkins P P 2016 Appl. Phys. Lett. 109
[20] Stichtenoth D, Wegener K, Gutsche C, Regolin I, Tegude F J, Prost W, Seibt M and Ronning C 2008 Appl. Phys. Lett. 92 163107
[21] Ronning C, Borschel C, Geburt S and Niepelt R 2010 Mater. Sci. Eng. R 70 30
[22] Borschel C and Ronning C 2011 Nucl. Instrum. Method B 269 2133
[23] Larin F 1968 Radiation Effects in Semiconductor Devices (New York, London, Sydney: John Wiley & Sons) p. 2
[24] Johnson N M, Ponce F A, Street R A and Nemanich R J 1987 Phys. Rev. B 35 4166
[25] Brauer G, Anwand W, Skorupa W, Kuriplach J, Melikhova O, Moisson C, von Wenckstern H, Schmidt H, Lorenz M and Grundmann M 2006 Phys. Rev. B 74 045208
[26] Li J, Li Z Y, Tan L Y, Zhou Y P, Ma J, Mykhaylo L, Fu L, Tan H H and Jagadish C 2017 Nanotechnology 28 125702
[27] Jiang N, Gao Q, Parkinson P, Wong-Leung J, Mokkapati S, Breuer S, Tan H, Zheng C, Etheridge J and Jagadish C 2013 Nano Lett. 13 5135
[28] Jiang N, Parkinson P, Gao Q, Breuer S, Tan H, Wong-Leung J and Jagadish C 2012 Appl. Phys. Lett. 101 023111
[29] Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
[30] Joyce H J, Gao Q, Tan H H, Jagadish C, Kim Y, Zhang X, Guo Y and Zou J 2007 Nano Lett. 7 921
[31] Ju S, Lee K, Janes D B, Dwivedi R C, Baffour-Awuah H, Wilkins R, Yoon M H, Facchetti A and Mark T J 2006 Appl. Phys. Lett. 89 073510
[32] Claeys C and Simoen E 2013 Radiation effects in advanced semiconductor materials and devices (New York: Springer Science & Business Media) p. 33
[33] Simoen E, Vanhellemont J and Claeys C 1996 Appl. Phys. Lett. 69 2858
[34] Markvart T 1990 J. Mater. Sci.: Mater. Electron. 1 1
[35] Vanhellemont J, Simoen E, Claeys C, Kaniava A, Gaubas E, Bosman G, Johlander B, Adams L and Clauws P 1994 IEEE Trans. Nucl. Sci. 41 1924
[36] Watts S J, Matheson J, HopkinsBond I H, HolmesSiedle A, Mohammadzadeh A and Pace R 1996 IEEE Trans. Nucl. Sci. 43 2587
[37] Schroder D K 1997 IEEE Trans. Electron. Dev. 44 160
[38] Lauhon L J, Gudiksen M S, Wang D and Lieber C M 2002 Nature 420 57
[39] Sah C T, Noyce R and Shockley W 1957 Proc. IRE 45 1228
[40] Liu H C, Wilson P H, Buchanan M and Khanna S M 1996 Infrared Detectors and Focal Plane Arrays Iv 2746 134
[41] Hoang T B, Titova L V, Yarrison-Rice J M, Jackson H E, Govorov A O, Kim Y, Joyce H J, Tan H H, Jagadish C and Smith L M 2007 Nano Lett. 7 588
[42] Ferrini R, Galli M, Guizzetti G, Patrini M, Nava F, Canali C and Vanni P 1997 Appl. Phys. Lett. 71 3084
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[3] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[4] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[5] Effect of heavy ion irradiation on the interface traps of AlGaN/GaN high electron mobility transistors
Zheng-Zhao Lin(林正兆), Ling Lü(吕玲), Xue-Feng Zheng(郑雪峰), Yan-Rong Cao(曹艳荣), Pei-Pei Hu(胡培培), Xin Fang(房鑫), and Xiao-Hua Ma(马晓华). Chin. Phys. B, 2022, 31(3): 036103.
[6] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[7] Influence of temperature and alloying elements on the threshold displacement energies in concentrated Ni-Fe-Cr alloys
Shijun Zhao(赵仕俊). Chin. Phys. B, 2021, 30(5): 056111.
[8] Evolution of ion-irradiated point defect concentration by cluster dynamics simulation
Shuaishuai Feng(冯帅帅), Shasha Lv(吕沙沙), Liang Chen(陈良), and Zhengcao Li(李正操). Chin. Phys. B, 2021, 30(5): 056105.
[9] Total dose test with γ-ray for silicon single photon avalanche diodes
Qiaoli Liu(刘巧莉), Haiyan Zhang(张海燕), Lingxiang Hao(郝凌翔), Anqi Hu(胡安琪), Guang Wu(吴光), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(8): 088501.
[10] Extended damage range of (Al0.3Cr0.2Fe0.2Ni0.3)3O4 high entropy oxide films induced by surface irradiation
Jian-Cong Zhang(张健聪), Sen Sun(孙森), Zhao-Ming Yang(杨朝明), Nan Qiu(裘南), Yuan Wang(汪渊). Chin. Phys. B, 2020, 29(6): 066104.
[11] Energetics and diffusion of point defects in Au/Ag metals:A molecular dynamics study
Zhi-Yong Liu(刘志勇), Bin He(何彬), Xin Qu(瞿鑫), Li-Bo Niu(牛莉博), Ru-Song Li(李如松), Fei Wang(王飞). Chin. Phys. B, 2019, 28(8): 083401.
[12] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[13] Orienting the future of bio-macromolecular electron microscopy
Fei Sun(孙飞). Chin. Phys. B, 2018, 27(6): 063601.
[14] Estimation of enhanced low dose rate sensitivity mechanisms using temperature switching irradiation on gate-controlled lateral PNP transistor
Xiao-Long Li(李小龙), Wu Lu(陆妩), Xin Wang(王信), Xin Yu(于新), Qi Guo(郭旗), Jing Sun(孙静), Mo-Han Liu(刘默寒), Shuai Yao(姚帅), Xin-Yu Wei(魏昕宇), Cheng-Fa He(何承发). Chin. Phys. B, 2018, 27(3): 036102.
[15] Bulk and surface damages in complementary bipolar junction transistors produced by high dose irradiation
J Assaf. Chin. Phys. B, 2018, 27(1): 016103.
No Suggested Reading articles found!