CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique |
Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶) |
National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract To gain a physical insight into the radiation effect on nanowires (NWs), the time resolved photoluminescence (TRPL) technique is used to investigate the carrier dynamic behaviors in GaAs/AlGaAs core-shell NWs before and after 1-MeV proton irradiation with fluences ranging from 1.0×1012 cm-2 to 3.0×1013 cm-2. It is found that the degradations of spectral peak intensity and minority carrier lifetime show similar trends against irradiation fluence, which is closely related to the displacement defects induced by irradiation. We also find that the proton irradiation-induced defects behave as Shockley-Read-Hall (SRH) recombination center trapping free carriers. Finally, the defect concentration could be estimated through measuring the minority carrier lifetime.
|
Received: 27 February 2017
Revised: 30 April 2017
Accepted manuscript online:
|
PACS:
|
62.23.Hj
|
(Nanowires)
|
|
61.72.-y
|
(Defects and impurities in crystals; microstructure)
|
|
61.80.-x
|
(Physical radiation effects, radiation damage)
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
Corresponding Authors:
Fa-Jun Li
E-mail: lifajun1201@gmail.com
|
About author: 0.1088/1674-1056/26/8/ |
Cite this article:
Li-Ying Tan(谭立英), Fa-Jun Li(黎发军), Xiao-Long Xie(谢小龙), Yan-Ping Zhou(周彦平), Jing Ma(马晶) Study on irradiation-induced defects in GaAs/AlGaAs core-shell nanowires via photoluminescence technique 2017 Chin. Phys. B 26 086201
|
[1] |
Kato T, Susawa H, Hirotani M, Saka T, Ohashi Y, Shichi E and Shibata S 1991 J. Cryst. Growth 107 832
|
[2] |
Stettner T, Zimmermann P, Loitsch B, Doblinger M, Regler A, Mayer B, Winnerl J, Matich S, Riedl H, Kaniber M, Abstreiter G, Koblmuller G and Finley J J 2016 Appl. Phys. Lett. 108 011108
|
[3] |
Wei W, Liu Y G, Zhang X, Wang Z and Ren X M 2014 Appl. Phys. Lett. 104 223103
|
[4] |
Badada B H, Shi T, Jackson H E, Smith L M, Zheng C L, Etheridge J, Gao Q, Tan H H and Jagadish C 2015 Nano Lett. 15 7847
|
[5] |
Aberg I, Vescovi G, Asoli D, Naseem U, Gilboy J P, Sundvall C, Dahlgren A, Svensson K E, Anttu N, Bjork M T and Samuelson L 2016 IEEE J. Photovolt. 6 185
|
[6] |
Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2013 Appl. Phys. Lett. 103 251109
|
[7] |
Seyedi M A, Yao M, O'Brien J, Wang S Y and Dapkus P D 2014 Appl. Phys. Lett. 105 041105
|
[8] |
Yamaguchi M 2001 Sol. Energy Mater. Sol. Cells 68 31
|
[9] |
Mitchell B, Trupke T, Weber J W and Nyhus J 2011 J. Appl. Phys. 109 083111
|
[10] |
Marcinkevicius S, Leon R, Cechavicius B, Siegert J, Lobo C, Magness B and Taylor W 2002 Physica B 314 203
|
[11] |
Ma L Y, Li Y D, Guo Q, Ai E K, Wang H J, Wang B and Zeng J Z 2015 Acta Phys. Sin. 64 154217 (in Chinese)
|
[12] |
Zhou Y P, Li F J, Che C, Tan L Y, Ran Q W, Yu S Y and Ma J 2014 Acta Phys. Sin. 63 148501 (in Chinese)
|
[13] |
Li F J, Tan L Y and Zhou Y P 2014 Appl. Mech. Mater. 556-562 5163
|
[14] |
Andrievski R A 2014 Uspekhi Fizicheskikh Nauk 184 1017
|
[15] |
Shen T 2008 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266 921
|
[16] |
Tan H, Williams J, Jagadish C, Burke P and Gal M 1996 Appl. Phys. Lett. 68 2401
|
[17] |
Tan H H and Jagadish C 1997 Appl. Phys. Lett. 71 2680
|
[18] |
Fu L, Tan H H, Johnston M B, Gal M and Jagadish C 1999 J. Appl. Phys. 85 6786
|
[19] |
Hirst L C, Yakes M K, Warner J H, Bennett M F, Schmieder K J, Walters R J and Jenkins P P 2016 Appl. Phys. Lett. 109
|
[20] |
Stichtenoth D, Wegener K, Gutsche C, Regolin I, Tegude F J, Prost W, Seibt M and Ronning C 2008 Appl. Phys. Lett. 92 163107
|
[21] |
Ronning C, Borschel C, Geburt S and Niepelt R 2010 Mater. Sci. Eng. R 70 30
|
[22] |
Borschel C and Ronning C 2011 Nucl. Instrum. Method B 269 2133
|
[23] |
Larin F 1968 Radiation Effects in Semiconductor Devices (New York, London, Sydney: John Wiley & Sons) p. 2
|
[24] |
Johnson N M, Ponce F A, Street R A and Nemanich R J 1987 Phys. Rev. B 35 4166
|
[25] |
Brauer G, Anwand W, Skorupa W, Kuriplach J, Melikhova O, Moisson C, von Wenckstern H, Schmidt H, Lorenz M and Grundmann M 2006 Phys. Rev. B 74 045208
|
[26] |
Li J, Li Z Y, Tan L Y, Zhou Y P, Ma J, Mykhaylo L, Fu L, Tan H H and Jagadish C 2017 Nanotechnology 28 125702
|
[27] |
Jiang N, Gao Q, Parkinson P, Wong-Leung J, Mokkapati S, Breuer S, Tan H, Zheng C, Etheridge J and Jagadish C 2013 Nano Lett. 13 5135
|
[28] |
Jiang N, Parkinson P, Gao Q, Breuer S, Tan H, Wong-Leung J and Jagadish C 2012 Appl. Phys. Lett. 101 023111
|
[29] |
Joyce H J, Parkinson P, Jiang N, Docherty C J, Gao Q, Tan H H, Jagadish C, Herz L M and Johnston M B 2014 Nano Lett. 14 5989
|
[30] |
Joyce H J, Gao Q, Tan H H, Jagadish C, Kim Y, Zhang X, Guo Y and Zou J 2007 Nano Lett. 7 921
|
[31] |
Ju S, Lee K, Janes D B, Dwivedi R C, Baffour-Awuah H, Wilkins R, Yoon M H, Facchetti A and Mark T J 2006 Appl. Phys. Lett. 89 073510
|
[32] |
Claeys C and Simoen E 2013 Radiation effects in advanced semiconductor materials and devices (New York: Springer Science & Business Media) p. 33
|
[33] |
Simoen E, Vanhellemont J and Claeys C 1996 Appl. Phys. Lett. 69 2858
|
[34] |
Markvart T 1990 J. Mater. Sci.: Mater. Electron. 1 1
|
[35] |
Vanhellemont J, Simoen E, Claeys C, Kaniava A, Gaubas E, Bosman G, Johlander B, Adams L and Clauws P 1994 IEEE Trans. Nucl. Sci. 41 1924
|
[36] |
Watts S J, Matheson J, HopkinsBond I H, HolmesSiedle A, Mohammadzadeh A and Pace R 1996 IEEE Trans. Nucl. Sci. 43 2587
|
[37] |
Schroder D K 1997 IEEE Trans. Electron. Dev. 44 160
|
[38] |
Lauhon L J, Gudiksen M S, Wang D and Lieber C M 2002 Nature 420 57
|
[39] |
Sah C T, Noyce R and Shockley W 1957 Proc. IRE 45 1228
|
[40] |
Liu H C, Wilson P H, Buchanan M and Khanna S M 1996 Infrared Detectors and Focal Plane Arrays Iv 2746 134
|
[41] |
Hoang T B, Titova L V, Yarrison-Rice J M, Jackson H E, Govorov A O, Kim Y, Joyce H J, Tan H H, Jagadish C and Smith L M 2007 Nano Lett. 7 588
|
[42] |
Ferrini R, Galli M, Guizzetti G, Patrini M, Nava F, Canali C and Vanni P 1997 Appl. Phys. Lett. 71 3084
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|