Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 068401    DOI: 10.1088/1674-1056/ab836d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles

F Sobhani, H Heidarzadeh, H Bahador
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
Abstract  The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell. Here we simulate spherical, conical, pyramidal, and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell, using the finite difference time domain (FDTD) method. By calculating the optical absorption and hence the photocurrent, it is shown that the clustering of nanoparticles significantly improves them. The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles. For comparison, first a cell with a single nanoparticle at the rear side is evaluated. Then four smaller nanoparticles are put around it to make a cluster. The photocurrents of 20.478 mA/cm2, 23.186 mA/cm2, 21.427 mA/cm2, and 21.243 mA/cm2 are obtained for the cells using clustering conical, spherical, pyramidal, cylindrical NPs at the backside, respectively. These values are 13.987 mA/cm2, 16.901 mA/cm2, 16.507 mA/cm2, 17.926 mA/cm2 for the cell with one conical, spherical, pyramidal, cylindrical NPs at the backside, respectively. Therefore, clustering can significantly improve the photocurrents. Finally, the distribution of the electric field and the generation rate for the proposed structures are calculated.
Keywords:  clustering nanoparticles      plasmonic solar cell      localized surface plasmon resonance      photocurrent      finite difference time domain (FDTD) method      light management  
Received:  27 November 2019      Revised:  02 March 2020      Accepted manuscript online: 
PACS:  84.60.Jt (Photoelectric conversion)  
  82.35.Np (Nanoparticles in polymers)  
  88.40.H- (Solar cells (photovoltaics))  
Corresponding Authors:  H Heidarzadeh     E-mail:  heidarzadeh@uma.ac.ir

Cite this article: 

F Sobhani, H Heidarzadeh, H Bahador Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles 2020 Chin. Phys. B 29 068401

[1] Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovolt. 23 1
[2] Martí A and Luque A 2003 Next generation photovoltaics: High efficiency through full spectrum utilization (New York: CRC Press)
[3] Heidarzadeh H, Baghban H, Rasooli H, Dolatyari M and Rostami A Optik 125 1292
[4] Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2014 J. Photon. Energy 4 042098
[5] Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2015 IEEE Trans. Electron Dev. 62 2231
[6] Heidarzadeh H, Rostami A and Dolatyari M 2020 Mater. Sci. Semicond. Process. 109 104936
[7] Heidarzadeh H 2019 Silicon 1
[8] Heidarzadeh H 2019 Opt. Quantum Electron. 51 32
[9] Zhang J N, Wang L, Dai Z, Tang X, Liu Y B and Yang D R 2017 Chin. Phys. Lett. 34 028801
[10] Hussain T, Ye H Q and Xiao D 2016 Chin. Phys. Lett. 33 058801
[11] Li L, Dong Y, Shi-Liang W, Wei W, Wen-Chao L, Xiao-Shan W and Feng-Ming Z 2015 Chin. Phys. Lett. 32 118401
[12] Zhao S S, Xu Y Z, Chen J F, Zhang L, Hou G F, Zhang X D and Zhao Y 2019 Acta Phys. Sin. 68 048801 (in Chinese)
[13] Kabir E, Kumar P, Kumar S, Adelodun A A and Kim K H 2018 Renew. Sust. Energ. Rev. 82 894
[14] Heidarzadeh H, Rostami A, Matloub S, Dolatyari M and Rostami G 2015 Appl. Opt. 54 3591
[15] Heidarzadeh H and Tavousi A 2019 Mater. Sci. Eng. B-Adv. 240 1
[16] Heidarzadeh H 2019 Sol. Energy 189 457
[17] Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal S S, Wang L, Zhang Q, Zhang X and Jie J 2013 J. Mater. Chem. A 1 15348
[18] Sun D, Ge Y, Xu S Z, Zhang L, Li B Z, Wang G C, Wei C C, Zhao Y and Zhang X D 2015 Chin. Phys. Lett. 32 128401
[19] Garnett E and Yang P 2010 Nano Lett. 10 1082
[20] Ferry V E, Verschuuren M A, Li H B, Verhagen E, Walters R J, Schropp R E, Atwater H A and Polman A 2010 Opt. Exp. 18 A237
[21] Yu Z, Raman A and Fan S 2010 Proc. Natl. Acad. Sci. USA 107 17491
[22] Wang Y, Wang P, Zhou X, Li C, Li H, Hu X, Li F, Liu X, Li M and Song Y 2018 Adv. Energy Mater. 8 1702960
[23] Araújo A, Mendes M J, Mateus T, Costa J, Nunes D, Fortunato E, Águas H and Martins R 2018 Sol. Energy 174 786
[24] Jangjoy A, Bahador H and Heidarzadeh H 2019 Opt. Commun. 450 216
[25] Li X, Wang L, Xiong J Q, Shao Q P, Jiang R and Chen S F 2018 Acta. Phys. Sin. 67 247201 (in Chinese)
[26] Zhang J, Qu Z and Maharjan A 2019 Energy 174 110
[27] Liu Q, Sun Y, Yao M, Xu B, Liu G, Hussain M B, Jiang K and Li C 2019 Sol. Energy 185 290
[28] Mandal P and Sharma S 2016 Renew. Sust. Energ. Rev. 65 537
[29] Bahador H and Heidarzadeh H 2020 Plasmonics (in press)
[30] Bezryadina A, Zhao J, Xia Y, Zhang X and Liu Z 2018 ACS Nano 12 8248
[31] Kuruvinashetti K, Kashani A S, Badilescu S, Beaudet D, Piekny A and Packirisamy M 2018 Plasmonics 13 1639
[32] Mokari G and Heidarzadeh H 2019 Plasmonics 1
[33] Rakhshani M R, Tavousi A and Mansouri-Birjandi M A 2018 Appl. Opt. 57 7798
[34] Heidarzadeh H 2020 Opt. Commun. 459 124940
[35] Chen M, He Y, Wang X and Hu Y 2018 Appl. Energ. 211 735
[36] Ghahremanirad E, Olyaee S, Nejand B A, Nazari P, Ahmadi V and Abedi K 2018 Sol. Energy 169 498
[37] Heidarzadeh H and Mehrfar F 2018 Plasmonics 13 2305
[38] Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2016 Appl. Opt. 55 1779
[39] Catchpole K a and Polman A 2008 Opt. Express 16 21793
[40] Wang T, Zou S, Zhu J, Lu Z, Sun H, Ye X, Fang L, Tang R and Su X 2019 AIP Adv. 9 025218
[41] Al-Azawi M A, Bidin N, Bououdina M and Mohammad S M 2016 Sol. Energy 126 93
[42] Sobhani A, Manjavacas A, Cao Y, McClain M J, García de Abajo F J, Nordlander P and Halas N J 2015 Nano Lett. 15 6946
[43] Yorulmaz M, Hoggard A, Zhao H, Wen F, Chang W S, Halas N J, Nordlander P and Link S 2016 Nano Lett. 16 6497
[44] Taylor R W, Esteban R n, Mahajan S, Aizpurua J and Baumberg J J 2016 J. Phys. Chem. C 120 10512
[45] Nguyen T K, Le T D, Dang P T and Le K Q 2017 J. Opt. Soc. Am. B 34 668
[46] Liang Y, Zhang H, Zhu W, Agrawal A, Lezec H, Li L, Peng W, Zou Y, Lu Y and Xu T 2017 ACS Sens. 2 1796
[47] Zhang Y, Wen F, Zhen Y R, Nordlander P and Halas N J 2013 Proc. Natl. Acad. Sci. 110 9215
[48] Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
[49] Beck F, Polman A and Catchpole K 2009 J. Appl. Phys. 105 114310
[50] He X B, Wei B, Fan K H, Li Y W and Wei X L 2019 Chin. Phys. B 28 074102
[1] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[2] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[3] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[4] Recombination-induced voltage-dependent photocurrent collection loss in CdTe thin film solar cell
Ling-Ling Wu(吴玲玲), Guang-Wei Wang(王光伟), Juan Tian(田涓), Dong-Ming Wang(王东明), and De-Liang Wang(王德亮). Chin. Phys. B, 2022, 31(10): 108803.
[5] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[6] Ion track-based nanowire arrays with gradient and programmable diameters towards rational light management
Ran Huang(黄冉), Jiaming Zhang(张家明), Fangfang Xu(徐芳芳), Jie Liu(刘杰), Huijun Yao(姚会军), Yonghui Chen(陈永辉), and Jinglai Duan(段敬来). Chin. Phys. B, 2021, 30(8): 086105.
[7] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[8] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[9] Enhancing light absorption for organic solar cells using front ITO nanograting and back ultrathin Al layer
Li Zhang(张力), Wei-Ning Liu(刘卫宁), Yan-Zhou Wang(王艳周), Qi-Ming Liu(刘奇明), Jun-Shuai Li(栗军帅), Ya-Li Li(李亚丽), and De-Yan He(贺德衍). Chin. Phys. B, 2021, 30(10): 104207.
[10] Studying the charge carrier properties in CuInS2 films via femtosecond transient absorption and nanosecond transient photocurrents
Mingrui Tan(谭铭瑞), Qinghui Liu(刘庆辉), Ning Sui(隋宁), Zhihui Kang(康智慧), Liquan Zhang(张里荃), Hanzhuang Zhang(张汉壮), Wenquan Wang(王文全), Qiang Zhou(周强), Yinghui Wang(王英惠). Chin. Phys. B, 2019, 28(5): 056106.
[11] Visualizing light-to-electricity conversion process in InGaN/GaN multi-quantum wells with a p-n junction
Yangfeng Li(李阳锋), Yang Jiang(江洋), Junhui Die(迭俊珲), Caiwei Wang(王彩玮), Shen Yan(严珅), Haiyan Wu(吴海燕), Ziguang Ma(马紫光), Lu Wang(王禄), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Hong Chen(陈弘). Chin. Phys. B, 2018, 27(9): 097104.
[12] Selective enhancement of green upconversion luminescence of Er-Yb: NaYF4 by surface plasmon resonance of W18O49 nanoflowers and applications in temperature sensing
Ang Li(李昂), Jin-Lei Wu(吴金磊), Xue-Song Xu(许雪松), Yang Liu(刘洋), Ya-Nan Bao(包亚男), Bin Dong(董斌). Chin. Phys. B, 2018, 27(9): 097301.
[13] 4.3 THz quantum-well photodetectors with high detection sensitivity
Zhenzhen Zhang(张真真), Zhanglong Fu(符张龙), Xuguang Guo(郭旭光), Juncheng Cao(曹俊诚). Chin. Phys. B, 2018, 27(3): 030701.
[14] Photovoltaic effects in reconfigurable heterostructured black phosphorus transistors
Siqi Hu(胡思奇), Ruijuan Tian(田睿娟), Xiaoguang Luo(罗小光), Rui Yin(殷瑞), Yingchun Cheng(程迎春), Jianlin Zhao(赵建林), Xiaomu Wang(王肖沐), Xuetao Gan(甘雪涛). Chin. Phys. B, 2018, 27(12): 128502.
[15] Subwavelength asymmetric Au-VO2 nanodisk dimer for switchable directional scattering
Han-Mou Zhang(张汉谋), Wu-Yun Shang(尚武云), Hua Lu(陆华), Fa-Jun Xiao(肖发俊), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117301.
No Suggested Reading articles found!