INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles |
F Sobhani, H Heidarzadeh, H Bahador |
Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran |
|
|
Abstract The cluster-shaped plasmonic nanostructures are used to manage the incident light inside an ultra-thin silicon solar cell. Here we simulate spherical, conical, pyramidal, and cylindrical nanoparticles in a form of a cluster at the rear side of a thin silicon cell, using the finite difference time domain (FDTD) method. By calculating the optical absorption and hence the photocurrent, it is shown that the clustering of nanoparticles significantly improves them. The photocurrent enhancement is the result of the plasmonic effects of clustering the nanoparticles. For comparison, first a cell with a single nanoparticle at the rear side is evaluated. Then four smaller nanoparticles are put around it to make a cluster. The photocurrents of 20.478 mA/cm2, 23.186 mA/cm2, 21.427 mA/cm2, and 21.243 mA/cm2 are obtained for the cells using clustering conical, spherical, pyramidal, cylindrical NPs at the backside, respectively. These values are 13.987 mA/cm2, 16.901 mA/cm2, 16.507 mA/cm2, 17.926 mA/cm2 for the cell with one conical, spherical, pyramidal, cylindrical NPs at the backside, respectively. Therefore, clustering can significantly improve the photocurrents. Finally, the distribution of the electric field and the generation rate for the proposed structures are calculated.
|
Received: 27 November 2019
Revised: 02 March 2020
Accepted manuscript online:
|
PACS:
|
84.60.Jt
|
(Photoelectric conversion)
|
|
82.35.Np
|
(Nanoparticles in polymers)
|
|
88.40.H-
|
(Solar cells (photovoltaics))
|
|
Corresponding Authors:
H Heidarzadeh
E-mail: heidarzadeh@uma.ac.ir
|
Cite this article:
F Sobhani, H Heidarzadeh, H Bahador Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles 2020 Chin. Phys. B 29 068401
|
[1] |
Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D 2015 Prog. Photovolt. 23 1
|
[2] |
Martí A and Luque A 2003 Next generation photovoltaics: High efficiency through full spectrum utilization (New York: CRC Press)
|
[3] |
Heidarzadeh H, Baghban H, Rasooli H, Dolatyari M and Rostami A Optik 125 1292
|
[4] |
Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2014 J. Photon. Energy 4 042098
|
[5] |
Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2015 IEEE Trans. Electron Dev. 62 2231
|
[6] |
Heidarzadeh H, Rostami A and Dolatyari M 2020 Mater. Sci. Semicond. Process. 109 104936
|
[7] |
Heidarzadeh H 2019 Silicon 1
|
[8] |
Heidarzadeh H 2019 Opt. Quantum Electron. 51 32
|
[9] |
Zhang J N, Wang L, Dai Z, Tang X, Liu Y B and Yang D R 2017 Chin. Phys. Lett. 34 028801
|
[10] |
Hussain T, Ye H Q and Xiao D 2016 Chin. Phys. Lett. 33 058801
|
[11] |
Li L, Dong Y, Shi-Liang W, Wei W, Wen-Chao L, Xiao-Shan W and Feng-Ming Z 2015 Chin. Phys. Lett. 32 118401
|
[12] |
Zhao S S, Xu Y Z, Chen J F, Zhang L, Hou G F, Zhang X D and Zhao Y 2019 Acta Phys. Sin. 68 048801 (in Chinese)
|
[13] |
Kabir E, Kumar P, Kumar S, Adelodun A A and Kim K H 2018 Renew. Sust. Energ. Rev. 82 894
|
[14] |
Heidarzadeh H, Rostami A, Matloub S, Dolatyari M and Rostami G 2015 Appl. Opt. 54 3591
|
[15] |
Heidarzadeh H and Tavousi A 2019 Mater. Sci. Eng. B-Adv. 240 1
|
[16] |
Heidarzadeh H 2019 Sol. Energy 189 457
|
[17] |
Xie C, Zhang X, Ruan K, Shao Z, Dhaliwal S S, Wang L, Zhang Q, Zhang X and Jie J 2013 J. Mater. Chem. A 1 15348
|
[18] |
Sun D, Ge Y, Xu S Z, Zhang L, Li B Z, Wang G C, Wei C C, Zhao Y and Zhang X D 2015 Chin. Phys. Lett. 32 128401
|
[19] |
Garnett E and Yang P 2010 Nano Lett. 10 1082
|
[20] |
Ferry V E, Verschuuren M A, Li H B, Verhagen E, Walters R J, Schropp R E, Atwater H A and Polman A 2010 Opt. Exp. 18 A237
|
[21] |
Yu Z, Raman A and Fan S 2010 Proc. Natl. Acad. Sci. USA 107 17491
|
[22] |
Wang Y, Wang P, Zhou X, Li C, Li H, Hu X, Li F, Liu X, Li M and Song Y 2018 Adv. Energy Mater. 8 1702960
|
[23] |
Araújo A, Mendes M J, Mateus T, Costa J, Nunes D, Fortunato E, Águas H and Martins R 2018 Sol. Energy 174 786
|
[24] |
Jangjoy A, Bahador H and Heidarzadeh H 2019 Opt. Commun. 450 216
|
[25] |
Li X, Wang L, Xiong J Q, Shao Q P, Jiang R and Chen S F 2018 Acta. Phys. Sin. 67 247201 (in Chinese)
|
[26] |
Zhang J, Qu Z and Maharjan A 2019 Energy 174 110
|
[27] |
Liu Q, Sun Y, Yao M, Xu B, Liu G, Hussain M B, Jiang K and Li C 2019 Sol. Energy 185 290
|
[28] |
Mandal P and Sharma S 2016 Renew. Sust. Energ. Rev. 65 537
|
[29] |
Bahador H and Heidarzadeh H 2020 Plasmonics (in press)
|
[30] |
Bezryadina A, Zhao J, Xia Y, Zhang X and Liu Z 2018 ACS Nano 12 8248
|
[31] |
Kuruvinashetti K, Kashani A S, Badilescu S, Beaudet D, Piekny A and Packirisamy M 2018 Plasmonics 13 1639
|
[32] |
Mokari G and Heidarzadeh H 2019 Plasmonics 1
|
[33] |
Rakhshani M R, Tavousi A and Mansouri-Birjandi M A 2018 Appl. Opt. 57 7798
|
[34] |
Heidarzadeh H 2020 Opt. Commun. 459 124940
|
[35] |
Chen M, He Y, Wang X and Hu Y 2018 Appl. Energ. 211 735
|
[36] |
Ghahremanirad E, Olyaee S, Nejand B A, Nazari P, Ahmadi V and Abedi K 2018 Sol. Energy 169 498
|
[37] |
Heidarzadeh H and Mehrfar F 2018 Plasmonics 13 2305
|
[38] |
Heidarzadeh H, Rostami A, Dolatyari M and Rostami G 2016 Appl. Opt. 55 1779
|
[39] |
Catchpole K a and Polman A 2008 Opt. Express 16 21793
|
[40] |
Wang T, Zou S, Zhu J, Lu Z, Sun H, Ye X, Fang L, Tang R and Su X 2019 AIP Adv. 9 025218
|
[41] |
Al-Azawi M A, Bidin N, Bououdina M and Mohammad S M 2016 Sol. Energy 126 93
|
[42] |
Sobhani A, Manjavacas A, Cao Y, McClain M J, García de Abajo F J, Nordlander P and Halas N J 2015 Nano Lett. 15 6946
|
[43] |
Yorulmaz M, Hoggard A, Zhao H, Wen F, Chang W S, Halas N J, Nordlander P and Link S 2016 Nano Lett. 16 6497
|
[44] |
Taylor R W, Esteban R n, Mahajan S, Aizpurua J and Baumberg J J 2016 J. Phys. Chem. C 120 10512
|
[45] |
Nguyen T K, Le T D, Dang P T and Le K Q 2017 J. Opt. Soc. Am. B 34 668
|
[46] |
Liang Y, Zhang H, Zhu W, Agrawal A, Lezec H, Li L, Peng W, Zou Y, Lu Y and Xu T 2017 ACS Sens. 2 1796
|
[47] |
Zhang Y, Wen F, Zhen Y R, Nordlander P and Halas N J 2013 Proc. Natl. Acad. Sci. 110 9215
|
[48] |
Fan J A, Wu C, Bao K, Bao J, Bardhan R, Halas N J, Manoharan V N, Nordlander P, Shvets G and Capasso F 2010 Science 328 1135
|
[49] |
Beck F, Polman A and Catchpole K 2009 J. Appl. Phys. 105 114310
|
[50] |
He X B, Wei B, Fan K H, Li Y W and Wei X L 2019 Chin. Phys. B 28 074102
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|