1 Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China; 2 Department of Physics, School of Electronic and Information Engineering, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China
Abstract The idea of replacing traditional silicon-based electronic components with the ones assembled by organic molecules to further scale down the electric circuits has been attracting extensive research focuses. Among the molecularly assembled components, the design of molecular logic gates with simple structure and high Boolean computing speed remains a great challenge. Here, by using the state-of-the-art nonequilibrium Green's function theory in conjugation with first-principles method, the spin transport properties of single-molecule junctions comprised of two serially connected transition metal dibenzotetraaza[14]annulenes (TM(DBTAA), TM=Fe, Co) sandwiched between two single-walled carbon nanotube electrodes are theoretically investigated. The numerical results show a close dependence of the spin-resolved current-voltage characteristics on spin configurations between the left and right molecular kernels and the kind of TM atom in TM(DBTAA) molecule. By taking advantage of spin degree of freedom of electrons, NOR or XNOR Boolean logic gates can be realized in Fe(DBTAA) and Co(DBTAA) junctions depending on the definitions of input and output signals. This work proposes a new kind of molecular logic gates and hence is helpful for further miniaturization of the electric circuits.
(Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874242, 21933002, and 11704230), China Postdoctoral Science Foundation (Grant No. 2017M612321), and the Taishan Scholar Project of Shandong Province of China.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.