CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Seeing Dirac electrons and heavy fermions in new boron nitride monolayers |
Yu-Jiao Kang(康玉娇)1,2, Yuan-Ping Chen(陈元平)1,2, Jia-Ren Yuan(袁加仁)2, Xiao-Hong Yan(颜晓红)2, Yue-E Xie(谢月娥)1,2 |
1 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China; 2 Faculty of Science, Jiangsu University, Zhenjiang 212013, China |
|
|
Abstract Most three-dimensional (3D) and two-dimensional (2D) boron nitride (BN) structures are wide-band-gap insulators. Here, we propose two BN monolayers having Dirac points and flat bands, respectively. One monolayer is named as 5-7 BN that consists of five- and seven-membered rings. The other is a Kagome BN made of triangular boron rings and nitrogen dimers. The two structures show not only good dynamic and thermodynamic stabilities but also novel electronic properties. The 5-7 BN has Dirac points on the Fermi level, indicating that the structure is a typical Dirac material. The Kagome BN has double flat bands just below the Fermi level, and thus there are heavy fermions in the structure. The flat-band-induced ferromagnetism is also revealed. We analyze the origination of the band structures by partial density of states and projection of orbitals. In addition, a possible route to experimentally grow the two structures on some suitable substrates such as the PbO2 (111) surface and the CdO (111) surface is also discussed, respectively. Our research not only extends understanding on the electronic properties of BN structures, but also may expand the applications of BN materials in 2D electronic devices.
|
Received: 15 February 2020
Revised: 05 March 2020
Accepted manuscript online:
|
PACS:
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
73.43.Cd
|
(Theory and modeling)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874314) and the Natural Science Foundation of Hunan Province, China (Grant No. 2018JJ2377). |
Corresponding Authors:
Yue-E Xie
E-mail: yueex@ujs.edu.cn
|
Cite this article:
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥) Seeing Dirac electrons and heavy fermions in new boron nitride monolayers 2020 Chin. Phys. B 29 057303
|
[1] |
Pakdel A, Zhi C, Bando Y and Golberg D 2012 Mater. Today 15 256
|
[2] |
Xie C, Ma M, Liu C, Pan Y, Xiong M, He J, Gao G, Yu D, Xu B, Tian Y and Zhao Z 2017 J. Mater. Chem. C 5 5897
|
[3] |
Dai J, Wu X, Yang J and Zeng X C 2013 J. Phys. Chem. Lett. 4 3484
|
[4] |
Rubio A, Corkill J L and Cohen M L 1994 Phys. Rev. B 49 5081
|
[5] |
Han W, Bando Y, Kurashima K and Sato T 1998 Appl. Phys. Lett. 73 3085
|
[6] |
Meyer J C, Chuvilin A, Algara-Siller G, Biskupek J and Kaiser U 2009 Nano. Lett. 9 2683
|
[7] |
Alem N, Erni R, Kisielowski C, Rossell M D, Gannett W and Zettl A 2009 Phys. Rev. B 80 155425
|
[8] |
Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
|
[9] |
Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R and Ruoff R S 2010 Adv. Mater. 22 3906
|
[10] |
Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C and Zhi C 2010 ACS Nano 4 2979
|
[11] |
Hu M L, Yu Z, Zhang K W, Sun L Z and Zhong J X 2011 J. Phys. Chem. C 115 8260
|
[12] |
Moradian R, Shahrokhi M, Sadat Charganeh S and Moradian S 2012 Physica E 46 182
|
[13] |
Geim A K 2009 Science 324 1530
|
[14] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[15] |
Das Sarma S, Adam S, Hwang E H and Rossi E 2011 Rev. Mod. Phys. 83 407
|
[16] |
Zhou J, Wang Q, Sun Q and Jena P 2010 Phys. Rev. B 81 085442
|
[17] |
Li X, Wu X, Zeng X C and Yang J 2012 ACS Nano 6 4104
|
[18] |
Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y and Golberg D 2010 Nano Lett. 10 5049
|
[19] |
Song L, Ci L, Lu H, Sorokin P B, Jin C, Ni J, Kvashnin A G, Kvashnin D G, Lou J, Yakobson B I and Ajayan P M 2010 Nano Lett. 10 3209
|
[20] |
Golberg D, Bando Y, Huang Y, Xu Z, Wei X, Bourgeois L, Wang M S, Zeng H, Lin J and Zhi C 2010 Isr. J. Chem. 50 405
|
[21] |
Wan H, Zhou B, Liao W and Zhou G 2013 J. Chem. Phys. 138 034705
|
[22] |
Liu Y, Wang G, Huang Q, Guo L and Chen X 2012 Phys. Rev. Lett. 108 225505
|
[23] |
Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401
|
[24] |
Fan Q, Martin-Jimenez D, Ebeling D, Krug C K, Brechmann L, Kohlmeyer C, Hilt G, Hieringer W, Schirmeisen A and Gottfried J M 2019 J. Am. Chem. Soc. 141 17713
|
[25] |
Chen Y, Xu S, Xie Y, Zhong C, Wu C and Zhang S B 2018 Phys. Rev. B 98 035135
|
[26] |
Majidi R 2017 Theor. Chem. Acc. 136 109
|
[27] |
Wu C, Bergman D, Balents L and Das Sarma S 2007 Phys. Rev. Lett. 99 070401
|
[28] |
Bandyopadhyay A, Nandy A, Chakrabarti A and Jana D 2017 Phys. Chem. Chem. Phys. 19 21584
|
[29] |
Zhou M, Liu Z, Ming W, Wang Z and Liu F 2014 Phys. Rev. Lett. 113 236802
|
[30] |
Maruyama M, Cuong N T and Okada S 2016 Carbon 109 755
|
[31] |
Tasaki H 1992 Phys. Rev. Lett. 69 1608
|
[32] |
Wigner E 1934 Phys. Rev. 46 1002
|
[33] |
Mielke A 1991 J. Phys. A-Math. Gen. 24 L73
|
[34] |
Huang S, Xie Y, Zhong C and Chen Y 2018 J. Phys. Chem. Lett. 9 2751
|
[35] |
Shahrokhi M, Mortazavi B and Berdiyorov G R 2017 Solid State Commun. 253 51
|
[36] |
Li X D and Cheng X L 2018 Chem. Phys. Lett. 694 102
|
[37] |
Chern G W, Mellado P and Tchernyshyov O 2011 Phys. Rev. Lett. 106 207202
|
[38] |
Chen Y, Sun Y Y, Wang H, West D, Xie Y, Zhong J, Meunier V, Cohen M L and Zhang S B 2014 Phys. Rev. Lett. 113 085501
|
[39] |
Kresse G and Hafner J 1993 Phys. Rev. B 47 558
|
[40] |
Hammer B, Hansen L B and Norskov J K 1999 Phys. Rev. B 59 7413
|
[41] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[42] |
Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
|
[43] |
Dai Y H, Liao L Z and Li D 2004 Numer. Algorithms 35 249
|
[44] |
NoséS 1984 J. Chem. Phys. 81 511
|
[45] |
Narita N, Nagai S, Suzuki S and Nakao K 1998 Phys. Rev. B 58 11009
|
[46] |
Zyuzin A A, Wu S and Burkov A A 2012 Phys. Rev. B 85 165110
|
[47] |
Turner A M, Zhang Y and Vishwanath A 2010 Phys. Rev. B 82 241102
|
[48] |
Sun K, Yao H, Fradkin E and Kivelson S A 2009 Phys. Rev. Lett. 103 046811
|
[49] |
Zhang H, Xie Y, Zhang Z, Zhong C, Li Y, Chen Z and Chen Y 2017 J. Phys. Chem. Lett. 8 1707
|
[50] |
White S R and Sham L J 1981 Phys. Rev. Lett. 47 879
|
[51] |
Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602
|
[52] |
Murphy D W, Sunshine S, van Dover R B, Cava R J, Batlogg B, Zahurak S M and Schneemeyer L F 1987 Phys. Rev. Lett. 58 1888
|
[53] |
Filinov A V, Bonitz M and Lozovik Y E 2001 Phys. Rev. Lett. 86 3851
|
[54] |
Laughlin R B 1983 Phys. Rev. Lett. 50 1395
|
[55] |
Edelstein V M 1990 Solid State Commun. 73 233
|
[56] |
Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M, Dubey M, Molle A and Akinwande D 2015 Nat. Nanotechnol. 10 227
|
[57] |
Lu X, Utama M I B, Lin J, Gong X, Zhang J, Zhao Y, Pantelides S T, Wang J, Dong Z, Liu Z, Zhou W and Xiong Q 2014 Nano Lett. 14 2419
|
[58] |
Zhukovskii Y F, Kotomin E A, Fuks D, Dorfman S, Marshall Stoneham A, Sychev O and Borstel G 2004 Appl. Surf. Sci. 226 298
|
[59] |
Ouahab A, Mottet C and Goniakowski J 2005 Phys. Rev. B 72 035421
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|