Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054501    DOI: 10.1088/1674-1056/ab7b4d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Growth induced buckling of morphoelastic rod in viscous medium

Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏)
School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China
Abstract  Biological growth is a common phenomenon in nature, and some organisms such as DNA molecules and bacterial filaments grow in viscous media. The growth induced instability of morphoelastic rod in a viscous medium is studied in this paper. Based on the Kirchhoff kinetic analogy method, the mechanical model for growing elastic thin rod in the viscous medium is established. A perturbation analysis is used to analyze the stability of the growing elastic rod in the viscous medium. We apply the results into planar growing ring and get its criterion of instability. Take the criterion into DNA ring to discuss the influence of viscous resistance on its instability.
Keywords:  growth      morphoelastic rod      Kirchhoff rod      buckling      perturbation  
Received:  24 October 2019      Revised:  21 January 2020      Accepted manuscript online: 
PACS:  45.10.Db (Variational and optimization methods)  
  46.15.Ff (Perturbation and complex analysis methods)  
  45.70.Qj (Pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772141 and 11262019) and the State Scholarship Fund of China Scholarship Council (Grant No. 201708370030).
Corresponding Authors:  Peng Wang     E-mail:  sdpengwang@163.com

Cite this article: 

Yitong Zhang(张一桐), Shuai Zhang(张帅), Peng Wang(王鹏) Growth induced buckling of morphoelastic rod in viscous medium 2020 Chin. Phys. B 29 054501

[1] Ambrosi D, Ateshian G A and Arruda E M et al. 2011 J. Mech. Phys. Solids 59 863
[2] Li B, Cao Y P, Feng X Q and Gao H 2012 Soft Matter 8 5728
[3] Budday S, Kuhl E and Hutchinson J W 2015 Philos. Mag. 95 1
[4] Rausch M K, Dam A, GöKtepe S, Abilez O J and Kuhl E 2011 Biomech. Model. Mechanobiol. 10 799
[5] Goriely A, Geers M G, Holzapfel G A, Jayamohan J, Jerusalem A, Sivaloganathan S, Squier W, van Dommelen J A, Waters S and Kuhl E 2015 Biomech. Model. Mechanobiol. 14 931
[6] Budday S, Steinmann P and Kuhl E 2014 J. Mech. Phys. Solids 72 75
[7] Carichino L and Olson S D 2019 Math. Med. Biol. 36 439
[8] Wolgemuth C W, Goldstein R E and Powers T R 2004 Physica D 190 266
[9] Goriely A and Tabor M 2003 Phys. Rev. Lett. 90 108101
[10] Moulton D E, Lessinnes T and Goriely A 2013 J. Mech. Phys. Solids 61 398
[11] Liu Y Z 2006 Nonlinear Mechanics of Thin Elastic Rod–Theoretical Basis of Mechanical Model of DNA (Beijing: Tsinghua University Press) p. 14 (in Chinese)
[12] Zhou H J and Ou-Yang Z C 1999 J. Chem. Phys. 110 1247
[13] Coleman B D, Swigon S and Tobias I 2000 Phys. Rev. E 61 759
[14] Goriely A and Tabor M 1996 Phys. Rev. Lett. 77 3537
[15] Goriely A and Tabor M 1997 Physica D 105 20
[16] Liu Y Z and Xue Y 2015 Acta Phys. Sin. 64 190 (in Chinese)
[17] Xue Y, Liu Y Z and Chen L Q 2006 Acta Phys. Sin. 55 3845 (in Chinese)
[18] Xue Y, Liu Y Z and Chen L Q 2004 Chin. Phys. 13 794
[19] Furrer P B, Manning R S and Maddocks J H 2000 Biophys. J. 79 116
[20] Shi Y, Borovik A E and Hearst J E 1995 J. Chem. Phys. 103 3166
[21] Wang P, Feng H R and Lou Z M 2017 Acta. Phys. Pol. A 131 283
[22] Wang P and Xue Y 2016 Nonlinear Dyn. 83 1815
[23] Wang P, Xue Y and Liu Y L 2012 Chin. Phys. B 21 70203
[24] Liu Y Z 2005 Acta Phys. Sin. 54 4989 (in Chinese)
[25] Liu Y Z and Sheng L W 2007 Chin. Phys. B 16 891
[26] Wang P, Xue Y and Lou Z M 2017 Acta Phys. Sin. 66 094501 (in Chinese)
[27] Goriely A 2017 The Mathematics and Mechanics of Biological Growth (New York: Springer) p. 76
[28] Goldstein R E, Powers T R and Wiggins C H 1998 Phys. Rev. Lett. 80 5232
[29] Klapper I 1996 J. Comput. Phys. 125 325
[30] Keller J B and Rubinow S L 1976 J. Fluid Mech. 75 705
[31] Michell J H 1889 Messenger of Mathematics 11 181
[32] Goriely A 2006 J. Elasticity 84 281
[33] Wolgemuth C W, Powers T R and Goldstein R E 2000 Phys. Rev. Lett. 84 1623
[34] Caragine C M, Haley S C and Zidovska A 2018 Phys. Rev. Lett. 121 148101
[1] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[2] Crystal and electronic structure of a quasi-two-dimensional semiconductor Mg3Si2Te6
Chaoxin Huang(黄潮欣), Benyuan Cheng(程本源), Yunwei Zhang(张云蔚), Long Jiang(姜隆), Lisi Li(李历斯), Mengwu Huo(霍梦五), Hui Liu(刘晖), Xing Huang(黄星), Feixiang Liang(梁飞翔), Lan Chen(陈岚), Hualei Sun(孙华蕾), and Meng Wang(王猛). Chin. Phys. B, 2023, 32(3): 037802.
[3] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[4] Effects of preparation parameters on growth and properties of β-Ga2O3 film
Zi-Hao Chen(陈子豪), Yong-Sheng Wang(王永胜), Ning Zhang(张宁), Bin Zhou(周兵), Jie Gao(高洁), Yan-Xia Wu(吴艳霞), Yong Ma(马永), Hong-Jun Hei(黑鸿君), Yan-Yan Shen(申艳艳), Zhi-Yong He(贺志勇), and Sheng-Wang Yu(于盛旺). Chin. Phys. B, 2023, 32(1): 017301.
[5] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[6] Numerical simulation on dendritic growth of Al-Cu alloy under convection based on the cellular automaton lattice Boltzmann method
Kang-Wei Wang(王康伟), Meng-Wu Wu(吴孟武), Bing-Hui Tian(田冰辉), and Shou-Mei Xiong(熊守美). Chin. Phys. B, 2022, 31(9): 098105.
[7] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[8] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[9] Butt-joint regrowth method by MOCVD for integration of evanescent wave coupled photodetector and multi-quantum well semiconductor optical amplifier
Feng Xiao(肖峰), Qin Han(韩勤), Han Ye(叶焓), Shuai Wang(王帅), Zi-Qing Lu(陆子晴), and Fan Xiao(肖帆). Chin. Phys. B, 2022, 31(4): 048101.
[10] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[11] Simulation of detection and scattering of sound waves by the lateral line of a fish
V M Adamyan, I Y Popov, I V Blinova, and V V Zavalniuk. Chin. Phys. B, 2022, 31(2): 024301.
[12] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[13] Stochastic optimal control for norovirus transmission dynamics by contaminated food and water
Anwarud Din and Yongjin Li(黎永锦). Chin. Phys. B, 2022, 31(2): 020202.
[14] Perpendicular magnetization and exchange bias in epitaxial NiO/[Ni/Pt]2 multilayers
Lin-Ao Huang(黄林傲), Mei-Yu Wang(王梅雨), Peng Wang(王鹏), Yuan Yuan(袁源), Ruo-Bai Liu(刘若柏), Tian-Yu Liu(刘天宇), Yu Lu(卢羽), Jia-Rui Chen(陈家瑞), Lu-Jun Wei(魏陆军), Wei Zhang(张维), Biao You(游彪), Qing-Yu Xu(徐庆宇), and Jun Du(杜军). Chin. Phys. B, 2022, 31(2): 027506.
[15] Growth and characterization of superconducting Ca1-xNaxFe2As2 single crystals by NaAs-flux method
Hong-Lin Zhou(周宏霖), Yu-Hao Zhang(张与豪), Yang Li(李阳), Shi-Liang Li(李世亮), Wen-Shan Hong(洪文山), and Hui-Qian Luo(罗会仟). Chin. Phys. B, 2022, 31(11): 117401.
No Suggested Reading articles found!