Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054305    DOI: 10.1088/1674-1056/ab8207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Magnetoacoustic position imaging for liquid metal in animal interstitial structure

Xiao-He Zhao(赵筱赫)1,2, Guo-Qiang Liu(刘国强)1,2, Hui Xia(夏慧)1,2, Yan-Hong Li(李艳红)1,2
1 Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Magnetoacoustic tomography with magnetic induction (MAT-MI), as a new kind of in-vivo imaging method, has potential application value in interstitial fluid research. In this paper, we propose the application of MAT-MI with liquid metal serving as a tracer of the interstitial structure to study its fluid behavior, and use it to implement the positional imaging of the spatial distribution of liquid metal. Owing to the particularity of liquid metal magnetoacoustic pressure (MAP) signals, we propose an envelope analysis method to extract the rising edge of the amplitude envelope of the detected waveform as effective position data. And for the first time, we propose the method of superpositing pixel matrix to achieve the position imaging of liquid metal. Finally, the positional imaging of the liquid metal sample embedded in the gel is achieved to have relatively accurate results. This study provides a method of effectively extracting data and implementing the position imaging for liquid metal in the interstitial structure in the frame of MAT-MI.
Keywords:  magnetic acoustic tomography with magnetic induction (MAT-MI)      liquid metal      interstitial structure      position imaging  
Received:  09 January 2020      Revised:  13 February 2020      Accepted manuscript online: 
PACS:  43.80.+p (Bioacoustics)  
  72.55.+s (Magnetoacoustic effects)  
  73.50.Rb (Acoustoelectric and magnetoacoustic effects)  
  75.90.+w (Other topics in magnetic properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61771448, 61427806, and 51937010), the National Key Research and Development Program of China (Grant No. 2018YFC0115200), and the Natural Science Fund from the Chinese Academy of Sciences (Grant Nos. ZDKYYQ20190002 and YJKYYQ20190005).
Corresponding Authors:  Guo-Qiang Liu     E-mail:  gqliu@mail.iee.ac.cn

Cite this article: 

Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红) Magnetoacoustic position imaging for liquid metal in animal interstitial structure 2020 Chin. Phys. B 29 054305

[1] Dennes P G 1992 Angew. Chem. Int. Ed. Engl. (Nobel Lecture) 31 842
[2] Liao F L, Li M, Han D, et al. 2006 Trends Pharmacol. Sci. 27 287
[3] Li H Y, Chen M, Yang J F, et al, 2012 PLoS. One. 7 e41395
[4] Benia P C, Wells R G and AboagyeB S 2018 Sci. Rep-UK 8 4947
[5] Stecco C, Stern R, et al. 2011 Surg. Radiol. Anat. 33 891
[6] Myers T W 2009 Anatomy Trains: Myofascial Meridians for Manual and Movement Therapists, 2nd edn. (New York: Churchill Livingstone) ISBN: 978-0-443-10283-7
[7] Kitamura S 2018 Anat. Sci. Int. 93 1
[8] Adstrum S and Nicholson H 2019 Clin. Anat. 32 862
[9] Shi X L, Zhu Y T, Dong H, et al. 2016 Nano Res. 9 2097
[10] Moonen C, Vanzijl P, Frank J, et al. 1990 Science 250 53
[11] Xu Y and He B 2005 Phys. Med. Biol. 50 5175
[12] Li X, Yu K and He B 2016 Phys. Med. Biol. 61 R249
[13] Li X, Li X, Zhu S and He B 2009 Med. Biol. 54 2667
[14] Ma Q and He B 2007 Phys. Med. Biol. 52 5085
[15] Ma Q and He B 2008 IEEE Trans. Biomed. Eng. 55 813
[16] Zhou L, Li X, Zhu S and He B 2011 Phys. Med. Biol. 56 1967
[17] Li X, Xu Y and He B 2006 J. Appl. Phys. 99 066112
[18] Sun X, Fang D, Zhang D and Ma Q 2013 Med. Phys. 40 052902
[19] Li X and He B 2010 IEEE Trans. Med. Imaging 29 1759
[20] Hu G, Cressman E and He B 2011 Appl. Phys. Lett. 98 23703
[21] Mariappan L, Li X and He B 2011 IEEE Trans. Biomed. Eng. 58 713
[22] Mariappan L and He B 2013 IEEE Trans. Med. Imaging 32 619
[23] Guo G P, Ding H P, Ma Q Y, et al. 2017 Chin. Phys. B 26 084301
[24] Mariappan L and He B 2013 IEEE T. Med. Imaging 32 6410038
[25] Zhao X H, Liu G Q, Li Y H, et al. 2020 J. Phys. D: Appl. Phys. 53 065401
[26] Li Z W, Li J, Li X P, et al. 2017 Exp. Therm. Fluid Sci. 82 240
[27] Hu N Cao Y P, Han D, et al. 2018 Nano. Res. 11 2265
[1] Heat transfer of liquid metal alloy on copper plate deposited with film of different surface free energy
Huilong Yan(闫慧龙), Jinliang Yan(闫金良), Gang Zhao(赵刚). Chin. Phys. B, 2019, 28(11): 114401.
[2] Wetting and coalescence of the liquid metal on the metal substrate
Zhen-Yang Zhao(赵珍阳), Tao Li(李涛), Yun-Rui Duan(段云瑞), Zhi-Chao Wang(王志超), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 083104.
[3] Structural origin underlying the effect of cooling rate on solidification point
Li Chen-Hui (李晨辉), Han Xiu-Jun (韩秀君), Luan Ying-Wei (栾英伟), Li Jian-Guo (李建国). Chin. Phys. B, 2015, 24(11): 116101.
[4] Molecular dynamics simulation of self-diffusion coefficients for liquid metals
Ju Yuan-Yuan (巨圆圆), Zhang Qing-Ming (张庆明), Gong Zi-Zheng (龚自正), Ji Guang-Fu (姬广富). Chin. Phys. B, 2013, 22(8): 083101.
[5] Reverse Monte Carlo study on structural order in liquid and glassy AlFe alloys
Zhang Jing-Xiang(张景祥),Li Hui(李辉),Zhang Jie(张洁), Song Xi-Gui(宋西贵), and Bian Xiu-Fang(边秀房) . Chin. Phys. B, 2009, 18(11): 4949-4954.
[6] A simulation study of microstructure evolution during solidification process of liquid metal Ni
Liu Hai-Rong(刘海蓉), Liu Rang-Su(刘让苏), Zhang Ai-Long(张爱龙), Hou Zhao-Yang(侯兆阳), Wang Xin(王鑫), and Tian Ze-An(田泽安). Chin. Phys. B, 2007, 16(12): 3747-3753.
No Suggested Reading articles found!