Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(4): 043203    DOI: 10.1088/1674-1056/ab75d9
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser

Hao Liu(刘浩)1,2, Jin-Peng Yuan(元晋鹏)1,2, Li-Rong Wang(汪丽蓉)1,2, Lian-Tuan Xiao(肖连团)1,2, Suo-Tang Jia(贾锁堂)1,2
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Abstract  We demonstrate the generation of the coherent 420 nm laser via parametric four-wave mixing process in Rb vapor. A single 778 nm laser with circular polarization is directly injected into a high-density atomic vapor, which drives the atoms from the 5S1/2 state to the 5D5/2 state with monochromatic two-photon transition. The frequency up-conversion laser is generated by the parametric four-wave mixing process under the phase matching condition. This coherent laser is firstly certified by the knife-edge method and a narrow range grating spectrometer. Then the generated laser power is investigated in terms of the power and frequency of the incoming beam as well as the density of the atoms. Finally, a 420 nm coherent laser with power of 19 μW and beam quality of Mx2 =1.32, My2 =1.37 is obtained with optimal experimental parameters. This novel laser shows potential prospects in the measurement of material properties, information storage, and underwater optical communication.
Keywords:  blue laser      four-wave mixing      frequency up-conversion  
Received:  07 January 2020      Revised:  04 February 2020      Accepted manuscript online: 
PACS:  32.80.-t (Photoionization and excitation)  
  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
Fund: Project supported by the National R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61875112, 61705122, 91736209, and 61728502), the Program for Sanjin Scholars of Shanxi Province, China, the Applied Basic Research Project of Shanxi Province, China (Grant No. 201701D221004), the Key Research and Development Program of Shanxi Province for International Cooperation, China (Grant No. 201803D421034), and 1331KSC.
Corresponding Authors:  Jin-Peng Yuan, Li-Rong Wang     E-mail:  yjp@sxu.edu.cn;wlr@sxu.edu.cn

Cite this article: 

Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂) Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser 2020 Chin. Phys. B 29 043203

[1] Lü B L, Burkett W H and Xiao M 1998 Opt. Lett. 23 0146
[2] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 0034
[3] Scully M O and Zhu S Y 1989 Phys. Rev. Lett. 62 2814
[4] Ding D S, Zhou Z Y and Shi B S 2013 Chin. Phys. B 22 114203
[5] Radnaev A G, Dudin Y O, Zhao R, Jen H H, Jenkins S D, Kuzmich A and Kennedy T A B 2010 Nat. Phys. 6 894
[6] Michelle S M, Daniel J G and Robert W B 1985 Phys. Rev. Lett. 55 1086
[7] Brustlein S, Rio D L, Tonello A, Delage L and Reynaud F 2008 Phys. Rev. Lett. 100 153903
[8] Abbas M M, Mumma M J, Kostiuk T and Buhl D 1976 Appl. Optics 15 427
[9] Smith R C and Baker K S 1981 Appl. Optics 20 177
[10] Wang L R, Zhang Y C, Xiang S S, Cao S K, Xiao L T and Jia S T 2015 Chin. Phys. B 24 063201
[11] Kargapol'tsev S V, Velichansky V L, Yarovitsky A V, Taichenachev A V and Yudin V I 2005 Quantum Electron. 31 591
[12] Zibrov A S, Lukin M D, Hollberg L and Scully M O 2001 Phys. Rev. A 65 051801(R)
[13] Schultz J T, Abend S, Döring D, Debs J E, Altin P A, White J D, Robins N P and Close1 J D 2009 Opt. Lett. 34 2321
[14] Akulshin A M, Orel A A and McLean R J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 015401
[15] Sulham C V, Pitz G A and Perram G P 2010 Appl. Phys B 101 57
[16] Brekke E and Alderson L 2013 Opt. Lett. 38 2147
[17] Skinner D R and Whitcher R E 1972 J. Phys. E: Sci. Instrum. 5 237
[18] Khosrofian J M and Garetz B A 1983 Appl. Optics 22 3406
[19] Šibalić N, Pritchard J D, Adams C S and Weatheril K J 2017 Comput. Phys. Commun. 220 319
[20] Cheng X M, Du Y G, Zhang Y P, Wang Z G, Miao Y Z, Ren Z Y and Bai J T 2012 Opt. Commun. 285 4507
[21] Cheng J T, Edwards J C and Ellis P L 1990 J. Phys. Chem. 94 553
[22] Nieddu T, Ray T, Rajasree K S, Roy R and Chormaic S N 2019 Opt. Express 27 6528
[23] Garrett W R, Hart R C, Moore M A and Payne M G 1990 Phys. Rev. A 41 6345
[24] Brekke E and Swan N 2019 J Opt. Soc. Am. B 36 421
[25] Akbari R and Major A 2013 Laser Phys 23 035401
[26] Brekke E and Potier S 2017 Appl. Optics 56 1559
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[3] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[4] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[12] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[13] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[14] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[15] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
No Suggested Reading articles found!