Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 084208    DOI: 10.1088/1674-1056/23/8/084208
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental study on the Stokes effect in disordered birefringent microstructure fibers

Zhao Yuan-Yuan (赵原源)a b, Zhou Gui-Yao (周桂耀)c, Li Jian-She (李建设)b, Zhang Zhi-Yuan (张志远)d, Han Ying (韩颖)a
a College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China;
b College of Science, Yanshan University, Qinhuangdao 066004, China;
c Key Laboratory of Metastable Material Science and Technology, Yanshan University, Qinhuangdao 066004, China;
d College of Science, Air Force Engineering University, Xi'an 710051, China
Abstract  In this paper, a 120-fs pulse transmission experiment is carried out using disordered birefringent microstructure fibers with cladding ventages. Through this experiment, it is found for the first time that remarkable Stokes and anti-Stokes waves can also be produced when the central wavelength of the incident pulse is in the normal dispersion regime of the microstructure fiber. The generation of the two waves can be explained by the four-wave mixing phase matching theory. Properties of the two waves under the action of femtosecond laser pulses with different parameters are studied. The results show that the central wavelength of anti-Stokes waves and Stokes waves produced under the two orthogonal polarization states shift by 63 nm and 160 nm, respectively. The strengths and central positions of the two waves in birefringent fibers can be controlled by adjusting the phase match condition and the polarization directions of incident pulses.
Keywords:  microstructure fiber      four-wave mixing      anti-Stokes wave      Stokes wave  
Received:  26 December 2013      Revised:  21 April 2014      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.70.Mp (Nonlinear optical crystals)  
Fund: Project supported by the National Basic Research Program, China (Grant No. 2010CB327604), the National Natural Science Foundation of China (Grant Nos. 60637010, 61205084, and 61377100), and the Science and Technology Research and Development Program of Qinhuangdao City, China(Grant No. 201101A117).
Corresponding Authors:  Zhou Gui-Yao     E-mail:  zguiyao@163.com

Cite this article: 

Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖) Experimental study on the Stokes effect in disordered birefringent microstructure fibers 2014 Chin. Phys. B 23 084208

[1] Liu X M, Zhou X Q and Lu C 2005 Phys. Rev. A 72 013811
[2] Hu M L and Wang Q Y 2004 Acta Phys. Sin. 53 4243 (in Chinese)
[3] Liu X M 2008 Phys. Rev. A 77 043818
[4] Liu W H and Song X Z 2008 Acta Phys. Sin. 57 917 (in Chinese)
[5] Yu Y Q, Ruan S C, Zeng J C 2005 Acta Photon. Sin. 34 1294 (in Chinese)
[6] Li S G, Ji Y L and Zhou G Y 2004 Acta Phys. Sin. 53 478 (in Chinese)
[7] Chen Y Z, Li Y Z and Qu G 2006 Acta Phys. Sin. 55 717 (in Chinese)
[8] Zhang X J, Li H P and Liao J K 2010 Optics & Optoelectronic Technology 8 4
[9] Shen X W, Yu C X and Sang X Z 2012 Acta Phys. Sin. 61 044203 (in Chinese)
[10] Guo C Y, Sun X Y and Li A P 2009 Study Opt. Commun. 4 154
[11] Sun X W, Wang Q Y and Hu M L 2007 Acta Photon. Sin. 36 1 (in Chinese)
[12] Qiu J C, Liu H K and Tian X X 2007 Journal of China West Normal University (Natural Sciences) 28 4 (in Chinese)
[13] Saitoh K, Koshiba M and Mortensen N A 2006 New J. Phys. 8 207
[14] Yu L R, Yin J and Wan H 2010 Acta Phys. Sin. 59 5406 (in Chinese)
[15] Chen B 2008 Policy & Management 23 63
[16] Sun T T, Wang Z and Li C Q 2009 Chin. J. Lasers 36 154
[17] Stark S P, Biancalana F and Podlipensky A 2011 Phys. Rev. A 83 23808
[18] Sorensen S T, Judge A, Joly N Y and Russel P S 2010 J. Opt. Soc. Am. B 27 592
[19] Cascante-Vindas J, Diez A, Cruz J L and Anders M V 2010 Opt. Express 18 14535
[20] Cascante-Vindas J, Torres-Peiro S, Diez A and Andres M V 2010 Appl. Phys. B: Laers 98 371
[21] Labruyére A, Leproux P, Couderc V, Tombelaine V, Kobelke J, Schuster K, Bartelt H, Hilaire S, Hilaire S, Huss G and Melin G 2010 IEEE Photon. Technol. Lett. 22 1259
[22] Hu M L, Li Y F, Chai L, Xing Q, Doronina L V and Ivanov A A 2008 Opt. Express 16 11176
[23] Hao Z J, Zhao C J, Wen J G, Wen S C and Fan D Y 2011 Acta Opt. Sin. 31 10060031 (in Chinese)
[24] Fedotov A B, Voronin A A, Fedotov I V, Ivanov A A and Zhenltikov A M 2009 Opt. Lett. 34 851
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[10] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[11] Broadband tunable Raman soliton self-frequency shift to mid-infrared band in a highly birefringent microstructure fiber
Wei Wang(王伟), Xin-Ying Bi(毕新英), Jun-Qi Wang(王珺琪), Yu-Wei Qu(屈玉玮), Ying Han(韩颖), Gui-Yao Zhou(周桂耀), Yue-Feng Qi(齐跃峰). Chin. Phys. B, 2016, 25(7): 074206.
[12] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[13] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[14] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[15] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
No Suggested Reading articles found!