Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 054206    DOI: 10.1088/1674-1056/abd15f
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion

Chaohua Wu(吴超华)1,2, Zhiwei Fang(方致伟)3,†, Jintao Fan(樊景涛)1,2,‡, Gang Chen(陈刚)1,2,4, and Ya Cheng(程亚)2,3
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China;
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China;
3 The Extreme Optoelectromechanics Laboratory(XXL), School of Physics and Materials Science, East China Normal University, Shanghai 200241, China;
4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
Abstract  Using the mean-field normalized Lugiato-Lefever equation, we theoretically investigate the dynamics of cavity soliton and comb generation in the presence of Raman effect and the third-order dispersion. Both of them can induce the temporal drift and frequency shift. Based on the moment analysis method, we analytically obtain the temporal and frequency shift, and the results agree with the direct numerical simulation. Finally, the compensation and enhancement of the soliton spectral between the Raman-induced self-frequency shift and soliton recoil are predicted. Our results pave the way for further understanding the soliton dynamics and spectral characteristics, and providing an effective route to manipulate frequency comb.
Keywords:  dissipative Kerr soliton      frequency comb      Raman effect      dispersive wave  
Received:  21 September 2020      Revised:  02 December 2020      Accepted manuscript online:  08 December 2020
PACS:  42.65.-k (Nonlinear optics)  
  78.47.jh (Coherent nonlinear optical spectroscopy)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304203 and 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 12004116 and 11804204), and 1331KSC.
Corresponding Authors:  Zhiwei Fang, Jintao Fan     E-mail:  zwfang@phy.ecnu.edu.cn;bkxyfjt@163.com

Cite this article: 

Chaohua Wu(吴超华), Zhiwei Fang(方致伟), Jintao Fan(樊景涛), Gang Chen(陈刚), and Ya Cheng(程亚) Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion 2021 Chin. Phys. B 30 054206

[1] Akhmediev N and Ankiewicz A 2008 Dissipative Solitons: From Optics to Biology and Medicine (Springer)
[2] Leo F, Coen S, Kockaert P, Gorza S P, Emplit P and Haelterman M 2010 Nat. Photon. 4 471
[3] Herr T,Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145
[4] Kippenberg T J, Gaeta A L, Lipson M and Gorodetsky M L 2018 Science 361 eaan8083
[5] Chen J W, Wang J D, Qu X H and Zhang F M 2019 Acta Phys. Sin. 68 190602 (in Chinese)
[6] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J and Koos C 2017 Nature 546 274
[7] Spencer D T, Drake T, Briles T C, Stone J, Sinclair L C, Fredrick C, Li Q, Westly D, Ilic B R, Blue stone A, Volet N, Komljenovic T, Chang L, Lee S H, Oh D Y, Suh M G, Yang K Y, Pfeiffer M H P, Kippenberg T J, Norberg E, Theogarajan L, Vahala K, Newbury N R, Srinivasan K, Bowers J E, Diddams S A and Papp S B 2018 Nature 557 81
[8] Suh M G, Yang Q F, Yang K Y, Yi X and Vahala K J 2016 Science 354 600
[9] Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L and Lipson M 2018 Sci. Adv. 4 e1701858
[10] Obrzud E, Rainer M, Harutyunyan A, Anderson M H, Liu J, Geiselmann M, Chazelas B, Kundermann S, Lecomte S, Cecconi M, Ghedina A, Molinari E, Pepe F, Wildi F, Bouchy F, Kippenberg T J and Herr T 2019 Nat. Photon. 13 31
[11] Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, Martin E C, Fitzgerald M P, Doppmann G, Wang J, Mawet D, Papp S B, Diddams S A, Beichman C and Vahala K 2019 Nat. Photon. 13 25
[12] Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S B and Hummon M T 2019 Optica 6 680
[13] Yi X, Yang Q F, Yang K Y, Suh M G and Vahala K 2015 Optica 2 1078
[14] Cole D C, Lamb E S, Del’Haye P, Diddams S A and Papp S B 2017 Nat. Photon. 11 671
[15] Chen H J, Ji Q X, Wang H, Yang Q F, Cao Q T, Gong Q, Yi X and Xiao Y F 2020 Nat. Commun. 11 2336
[16] Guo H, Karpov M,Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L and Kippenberg T J 2017 Nat. Phys. 13 94
[17] He Y, Yang Q F, Ling J, Luo R, Liang H, Li M, Shen B, Wang H, Vahala K and Lin Q 2019 Optica 6 1138
[18] Joshi C, Jang J K, Luke K, Ji X, Miller S A, Klenner A, Okawachi Y, Lipson M and Gaeta A L 2016 Opt. Lett. 41 2565
[19] Wang P H, Jaramillo-Villegas J A, Xuan Y, Xue X, Bao C, Leaird D E, Qi M and Weiner A M 2016 Opt. Express 24 10890
[20] Wan S, Niu R, Wang Z Y, Peng J L, Li M, Li J, Guo G C, Zou C L and Dong C H 2020 Photon. Res. 8 1342
[21] Anderson M, Wang Y, Leo F, Coen S, Erkintalo M and Murdoch S G 2017 Phys. Rev. X 7 031031
[22] Wu C, Fan J, Chen G and Jia S 2019 Opt. Express 27 028133
[23] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852
[24] Xu X, Jin X Y, Hu X H and Huang X N 2020 Acta Phys. Sin. 69 024203 (in Chinese)
[25] Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37
[26] Wang S, Guo H, Bai X and Zeng X 2014 Opt. Lett. 39 2880
[27] Milián C and Skryabin D V 2014 Opt. Express 22 3732
[28] Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357
[29] Liu M, Wang L, Sun Q, Li S, Ge Z, Lu Z, Zeng C, Wang G, Zhang W, Hu X and Zhao W 2018 Opt. Express 26 016477
[30] Okawachi Y, Yu M, Venkataraman V, Latawiec P M, Griffith A G, Lipson M, Loncar M and Gaeta A L 2017 Opt. Lett. 42 2786
[31] Bao C, Xuan Y, Wang C, Jaramillo-Villegas J A, Leaird D E, Qi M and Weiner A M 2017 Opt. Lett. 42 759
[32] Fang Z, Luo H, Lin J, Wang M, Zhang J, Wu R, Zhou J, Chu W, Lu T and Cheng Y 2019 Opt. Lett. 44 5953
[33] Milián C, Gorbach A. V, Taki M, Yulin A V and Skryabin D V 2015 Phys. Rev. A 92 033851
[34] Karpov M, Guo H, Kordts A,Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett. 116 103902
[35] Yi X, Yang Q F, Yang K Y and Vahala K 2016 Opt. Lett. 41 003419
[36] Yi X, Yang Q F, Zhang X, Yang K Y, Li X and Vahala K 2017 Nat. Commun. 8 14869
[37] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B 29 034207
[38] Sahoo A and Roy S 2019 Phys. Rev. A 100 053814
[39] Cherenkov A V, Lobanov V E and Gorodetsky M L 2017 Phys. Rev. A 95 033810
[40] Malaguti S, Conforti M and Trillo S 2014 Opt. Lett. 39 5626
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[3] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[4] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Raman lasing and other nonlinear effects based on ultrahigh-Q CaF2 optical resonator
Tong Xing(邢彤), Enbo Xing(邢恩博), Tao Jia(贾涛), Jianglong Li(李江龙), Jiamin Rong(戎佳敏), Yanru Zhou(周彦汝), Wenyao Liu(刘文耀), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2022, 31(10): 104204.
[7] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[8] Controllable microwave frequency comb generation in a tunable superconducting coplanar-waveguide resonator
Shuai-Peng Wang(王帅鹏), Zhen Chen(陈臻), and Tiefu Li(李铁夫). Chin. Phys. B, 2021, 30(4): 048501.
[9] An Yb-fiber frequency comb phase-locked to microwave standard and optical reference
Hui-Bo Wang(汪会波), Hai-Nian Han(韩海年), Zi-Yue Zhang(张子越), Xiao-Dong Shao(邵晓东), Jiang-Feng Zhu(朱江峰), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(3): 030601.
[10] Eigenvalue spectrum analysis for temporal signals of Kerr optical frequency combs based on nonlinear Fourier transform
Jia Wang(王佳), Ai-Guo Sheng(盛爱国), Xin Huang(黄鑫), Rong-Yu Li(李荣玉), Guang-Qiang He(何广强). Chin. Phys. B, 2020, 29(3): 034207.
[11] Femtosecond enhancement cavity with kilowatt average power
Jin Zhang(张津), Lin-Qiang Hua(华林强), Shao-Gang Yu(余少刚), Zhong Chen(陈忠), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2019, 28(4): 044206.
[12] Photonic generation of RF and microwave signal with relative frequency instability of 10-15
Lu-Lu Yan(闫露露), Wen-Yu Zhao(赵文宇), Yan-Yan Zhang(张颜艳), Zhao-Yang Tai(邰朝阳), Pan Zhang(张攀), Bing-Jie Rao(饶冰洁), Kai Ning(宁凯), Xiao-Fei Zhang(张晓斐), Wen-Ge Guo(郭文阁), Shou-Gang Zhang(张首刚), Hai-Feng Jiang(姜海峰). Chin. Phys. B, 2018, 27(3): 030601.
[13] Ultra-broadband modulation instability gain characteristics in As2S3 and As2Se3 chalcogenide glass photonic crystal fiber
He-Lin Wang(王河林), Bin Wu(吴彬), Xiao-Long Wang(王肖隆). Chin. Phys. B, 2016, 25(6): 064207.
[14] Monolithic CEO-stabilization scheme-based frequency comb from an octave-spanning laser
Zi-Jiao Yu(于子蛟), Hai-Nian Han(韩海年), Yang Xie(谢阳), Hao Teng(滕浩), Zhao-Hua Wang(王兆华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(4): 044205.
[15] Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
Hong-Lei Yang(杨宏雷), Hao-Yun Wei(尉昊赟), Yan Li(李岩). Chin. Phys. B, 2016, 25(4): 044207.
No Suggested Reading articles found!