ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion |
Chaohua Wu(吴超华)1,2, Zhiwei Fang(方致伟)3,†, Jintao Fan(樊景涛)1,2,‡, Gang Chen(陈刚)1,2,4, and Ya Cheng(程亚)2,3 |
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China; 2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; 3 The Extreme Optoelectromechanics Laboratory(XXL), School of Physics and Materials Science, East China Normal University, Shanghai 200241, China; 4 Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China |
|
|
Abstract Using the mean-field normalized Lugiato-Lefever equation, we theoretically investigate the dynamics of cavity soliton and comb generation in the presence of Raman effect and the third-order dispersion. Both of them can induce the temporal drift and frequency shift. Based on the moment analysis method, we analytically obtain the temporal and frequency shift, and the results agree with the direct numerical simulation. Finally, the compensation and enhancement of the soliton spectral between the Raman-induced self-frequency shift and soliton recoil are predicted. Our results pave the way for further understanding the soliton dynamics and spectral characteristics, and providing an effective route to manipulate frequency comb.
|
Received: 21 September 2020
Revised: 02 December 2020
Accepted manuscript online: 08 December 2020
|
PACS:
|
42.65.-k
|
(Nonlinear optics)
|
|
78.47.jh
|
(Coherent nonlinear optical spectroscopy)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304203 and 2019YFA0705000), the National Natural Science Foundation of China (Grant Nos. 12004116 and 11804204), and 1331KSC. |
Corresponding Authors:
Zhiwei Fang, Jintao Fan
E-mail: zwfang@phy.ecnu.edu.cn;bkxyfjt@163.com
|
Cite this article:
Chaohua Wu(吴超华), Zhiwei Fang(方致伟), Jintao Fan(樊景涛), Gang Chen(陈刚), and Ya Cheng(程亚) Dissipative Kerr solitons in optical microresonators with Raman effect and third-order dispersion 2021 Chin. Phys. B 30 054206
|
[1] Akhmediev N and Ankiewicz A 2008 Dissipative Solitons: From Optics to Biology and Medicine (Springer) [2] Leo F, Coen S, Kockaert P, Gorza S P, Emplit P and Haelterman M 2010 Nat. Photon. 4 471 [3] Herr T,Brasch V, Jost J D, Wang C Y, Kondratiev N M, Gorodetsky M L and Kippenberg T J 2014 Nat. Photon. 8 145 [4] Kippenberg T J, Gaeta A L, Lipson M and Gorodetsky M L 2018 Science 361 eaan8083 [5] Chen J W, Wang J D, Qu X H and Zhang F M 2019 Acta Phys. Sin. 68 190602 (in Chinese) [6] Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J and Koos C 2017 Nature 546 274 [7] Spencer D T, Drake T, Briles T C, Stone J, Sinclair L C, Fredrick C, Li Q, Westly D, Ilic B R, Blue stone A, Volet N, Komljenovic T, Chang L, Lee S H, Oh D Y, Suh M G, Yang K Y, Pfeiffer M H P, Kippenberg T J, Norberg E, Theogarajan L, Vahala K, Newbury N R, Srinivasan K, Bowers J E, Diddams S A and Papp S B 2018 Nature 557 81 [8] Suh M G, Yang Q F, Yang K Y, Yi X and Vahala K J 2016 Science 354 600 [9] Dutt A, Joshi C, Ji X, Cardenas J, Okawachi Y, Luke K, Gaeta A L and Lipson M 2018 Sci. Adv. 4 e1701858 [10] Obrzud E, Rainer M, Harutyunyan A, Anderson M H, Liu J, Geiselmann M, Chazelas B, Kundermann S, Lecomte S, Cecconi M, Ghedina A, Molinari E, Pepe F, Wildi F, Bouchy F, Kippenberg T J and Herr T 2019 Nat. Photon. 13 31 [11] Suh M G, Yi X, Lai Y H, Leifer S, Grudinin I S, Vasisht G, Martin E C, Fitzgerald M P, Doppmann G, Wang J, Mawet D, Papp S B, Diddams S A, Beichman C and Vahala K 2019 Nat. Photon. 13 25 [12] Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S B and Hummon M T 2019 Optica 6 680 [13] Yi X, Yang Q F, Yang K Y, Suh M G and Vahala K 2015 Optica 2 1078 [14] Cole D C, Lamb E S, Del’Haye P, Diddams S A and Papp S B 2017 Nat. Photon. 11 671 [15] Chen H J, Ji Q X, Wang H, Yang Q F, Cao Q T, Gong Q, Yi X and Xiao Y F 2020 Nat. Commun. 11 2336 [16] Guo H, Karpov M,Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L and Kippenberg T J 2017 Nat. Phys. 13 94 [17] He Y, Yang Q F, Ling J, Luo R, Liang H, Li M, Shen B, Wang H, Vahala K and Lin Q 2019 Optica 6 1138 [18] Joshi C, Jang J K, Luke K, Ji X, Miller S A, Klenner A, Okawachi Y, Lipson M and Gaeta A L 2016 Opt. Lett. 41 2565 [19] Wang P H, Jaramillo-Villegas J A, Xuan Y, Xue X, Bao C, Leaird D E, Qi M and Weiner A M 2016 Opt. Express 24 10890 [20] Wan S, Niu R, Wang Z Y, Peng J L, Li M, Li J, Guo G C, Zou C L and Dong C H 2020 Photon. Res. 8 1342 [21] Anderson M, Wang Y, Leo F, Coen S, Erkintalo M and Murdoch S G 2017 Phys. Rev. X 7 031031 [22] Wu C, Fan J, Chen G and Jia S 2019 Opt. Express 27 028133 [23] Chembo Y K and Menyuk C R 2013 Phys. Rev. A 87 053852 [24] Xu X, Jin X Y, Hu X H and Huang X N 2020 Acta Phys. Sin. 69 024203 (in Chinese) [25] Coen S, Randle H G, Sylvestre T and Erkintalo M 2013 Opt. Lett. 38 37 [26] Wang S, Guo H, Bai X and Zeng X 2014 Opt. Lett. 39 2880 [27] Milián C and Skryabin D V 2014 Opt. Express 22 3732 [28] Brasch V, Geiselmann M, Herr T, Lihachev G, Pfeiffer M H P, Gorodetsky M L and Kippenberg T J 2016 Science 351 357 [29] Liu M, Wang L, Sun Q, Li S, Ge Z, Lu Z, Zeng C, Wang G, Zhang W, Hu X and Zhao W 2018 Opt. Express 26 016477 [30] Okawachi Y, Yu M, Venkataraman V, Latawiec P M, Griffith A G, Lipson M, Loncar M and Gaeta A L 2017 Opt. Lett. 42 2786 [31] Bao C, Xuan Y, Wang C, Jaramillo-Villegas J A, Leaird D E, Qi M and Weiner A M 2017 Opt. Lett. 42 759 [32] Fang Z, Luo H, Lin J, Wang M, Zhang J, Wu R, Zhou J, Chu W, Lu T and Cheng Y 2019 Opt. Lett. 44 5953 [33] Milián C, Gorbach A. V, Taki M, Yulin A V and Skryabin D V 2015 Phys. Rev. A 92 033851 [34] Karpov M, Guo H, Kordts A,Brasch V, Pfeiffer M H P, Zervas M, Geiselmann M and Kippenberg T J 2016 Phys. Rev. Lett. 116 103902 [35] Yi X, Yang Q F, Yang K Y and Vahala K 2016 Opt. Lett. 41 003419 [36] Yi X, Yang Q F, Zhang X, Yang K Y, Li X and Vahala K 2017 Nat. Commun. 8 14869 [37] Wang J, Sheng A G, Huang X, Li R Y and He G Q 2020 Chin. Phys. B 29 034207 [38] Sahoo A and Roy S 2019 Phys. Rev. A 100 053814 [39] Cherenkov A V, Lobanov V E and Gorodetsky M L 2017 Phys. Rev. A 95 033810 [40] Malaguti S, Conforti M and Trillo S 2014 Opt. Lett. 39 5626 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|