Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034304    DOI: 10.1088/1674-1056/ab69ed
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid

Yu-Xiang Dai(戴宇翔)1,2, Shou-Guo Yan(阎守国)1, Bi-Xing Zhang(张碧星)1,2
1 Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China;
2 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  We investigate the beam focusing technology of shear-vertical (SV) waves for a contact-type linear phased array to overcome the shortcomings of conventional wedge transducer arrays. The numerical simulation reveals the transient excitation and propagation characteristics of SV waves. It is found that the element size plays an important role in determining the transient radiation directivity of SV waves. The transient beam focusing characteristics of SV waves for various array parameters are deeply studied. It is particularly interesting to see that smaller element width will provide the focused beam of SV waves with higher quality, while larger element width may result in erratic fluctuation of focusing energy around the focal point. There exists a specific range of inter-element spacing for optimum focusing performance. Moreover, good beam focusing performance of SV waves can be achieved only at high steering angles.
Keywords:  beam focusing      shear-vertical (SV) waves      contact-type linear phased array      solid  
Received:  14 December 2019      Revised:  09 January 2020      Accepted manuscript online: 
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.38.+n (Transduction; acoustical devices for the generation and reproduction of sound)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774377 and 11574343).
Corresponding Authors:  Shou-Guo Yan     E-mail:  daiyuxiang@mail.ioa.ac.cn

Cite this article: 

Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星) Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid 2020 Chin. Phys. B 29 034304

[1] Tan J S, Frizzell L A, Sanghvi N, Wu S, Seip R and Kouzmanoff J T 2001 J. Acoust. Soc. Am. 109 3055
[2] Karaman M, Wygant I O, Oralkan O and Khuri-Yakub B T 2009 IEEE Trans. Med. Imag. 28 1051
[3] Matte G M, Van Neer P L M J, Danilouchkine M G, Huijssen J, Verweij M D and de N 2011 IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 58 533
[4] Bucci O M, Crocco L, Scapaticci R and Bellizzi G 2016 Proc. IEEE. 104 633
[5] Chatillon S, de Roumilly L, Porre J, Poidevin C and Calmon P 2006 Ultrasonics 44 e951
[6] Dupont-Marillia F, Jahazi M, Lafreniere S and Belanger P 2019 NDT&E Int. 103 119
[7] Choi Y, Lee H, Hong H and Ohma W S 2011 J. Acoust. Soc. Am. 130 2720
[8] Zhang J, Yu P and Gang T 2016 Nondestr. Test. Eval. 31 303
[9] Lerch T P, Schmerr L W and Sedov A 1997 Review of progress in quantitative nondestructive evaluation vol 16 p 885
[10] Wooh S C and Shi Y J 1999 Wave Motion 29 245
[11] Wooh S C and Shi Y J 1998 Ultrasonics 36 737
[12] Wooh S C and Shi Y J 1999 J. Nondestruct. Eval. 18 39
[13] Azar L, Shi Y J and Wooh S C 2000 NDT&E Int. 33 189
[14] Huang R and Schmerr L W 2009 Ultrasonics 49 219
[15] Lee J H and Choi S W 2000 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 47 644
[16] Crowther P 2004 Insight-Non-Destruct. Test. Cond. Monit. 46 525
[17] Yang S, Yoon B and Kim Y 2009 NDT&E Int. 42 128
[18] Ye J, Kim H, Song S, Kang S, Kim K and Song M 2011 NDT&E Int. 44 290
[19] Lhémery A, Calmon P, Lecœur-Taïbi I, Raillon R and Paradis L 2000 NDT&E Int. 33 499
[20] Drinkwater B W and Wilcox P D 2006 NDT&E Int. 39 525
[21] Kim H J, Park J S, Song S J and Schmerr Jr L W 2004 J. Nondestr. Eval. 23 81
[22] Song S J and Kim C H 2002 Ultrasonics 40 519
[23] Dai Y X, Yan S G and Zhang B X 2019 Acoust. Phys. 65 235
[24] Noroy M, Royer D and Fink M A 1995 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 42 981
[25] Zhang B X, Liu D D, Shi F F and Dong H 2013 Chin. Phys. B. 22 014302
[26] Schafer M E and Lewin P A 1989 J. Acoust. Soc. Am. 85 2202
[27] Wooh S C, Zhou Q and Wang J 2003 Exp. Mech. 43 450
[1] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition
Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹). Chin. Phys. B, 2022, 31(9): 098106.
[4] Multi-phase field simulation of competitive grain growth for directional solidification
Chang-Sheng Zhu(朱昶胜), Zi-Hao Gao(高梓豪), Peng Lei(雷鹏), Li Feng(冯力), and Bo-Rui Zhao(赵博睿). Chin. Phys. B, 2022, 31(6): 068102.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Copper ion beam emission in solid electrolyte Rb4Cu16I6.5Cl13.5
Tushagu Abudouwufu(吐沙姑·阿不都吾甫), Xiangyu Zhang (张翔宇), Wenbin Zuo (左文彬), Jinbao Luo(罗进宝), Yueqiang Lan(兰越强), Canxin Tian (田灿鑫), Changwei Zou(邹长伟), Alexander Tolstoguzov, and Dejun Fu(付德君). Chin. Phys. B, 2022, 31(4): 040704.
[8] Numerical study of growth competition between twin grains during directional solidification by using multi-phase field method
Chang-Sheng Zhu(朱昶胜), Ting Wang(汪婷), Li Feng(冯力), Peng Lei(雷鹏), and Fang-Lan Ma(马芳兰). Chin. Phys. B, 2022, 31(2): 028102.
[9] Palladium nanoparticles/wool keratin-assisted carbon composite-modified flexible and disposable electrochemical solid-state pH sensor
Wenli Zhang(张文立), Xiaotian Liu(刘笑天), Youhui Lin(林友辉), Liyun Ma(马利芸), Linqing Kong(孔令庆), Guangzong Min(闵光宗), Ronghui Wu(吴荣辉), Sharwari K. Mengane, Likun Yang(杨丽坤), Aniruddha B. Patil, and Xiang Yang Liu(刘向阳). Chin. Phys. B, 2022, 31(2): 028201.
[10] Solid-gas interface thermal conductance for the thermal barrier coating with surface roughness: The confinement effect
Xue Zhao(赵雪) and Jin-Wu Jiang(江进武). Chin. Phys. B, 2022, 31(12): 126802.
[11] Understanding the battery safety improvement enabled by a quasi-solid-state battery design
Luyu Gan(甘露雨), Rusong Chen(陈汝颂), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2022, 31(11): 118202.
[12] Terahertz spectroscopy and lattice vibrational analysis of pararealgar and orpiment
Ya-Wei Zhang(张亚伟), Guan-Hua Ren(任冠华), Xiao-Qiang Su(苏晓强), Tian-Hua Meng(孟田华), and Guo-Zhong Zhao(赵国忠). Chin. Phys. B, 2022, 31(10): 103302.
[13] Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives
Fangrong Hu(胡放荣), Mingyang Zhang(张铭扬), Wenbin Qi(起文斌), Jieyun Zheng(郑杰允), Yue Sun(孙悦), Jianyu Kang(康剑宇), Hailong Yu(俞海龙), Qiyu Wang(王其钰), Shijuan Chen(陈世娟), Xinhua Sun(孙新华), Baogang Quan(全保刚), Junjie Li(李俊杰), Changzhi Gu(顾长志), and Hong Li(李泓). Chin. Phys. B, 2021, 30(6): 068202.
[14] First-principles study of the co-effect of carbon doping and oxygen vacancies in ZnO photocatalyst
Jia Shi(史佳), Lei Wang(王蕾), and Qiang Gu(顾强). Chin. Phys. B, 2021, 30(2): 026301.
[15] Effects of heat transfer in a growing particle layer on microstructural evolution during solidification of colloidal suspensions
Jia-Xue You(游家学), Yun-Han Zhang(张运涵), Zhi-Jun Wang(王志军), Jin-Cheng Wang(王锦程), and Sheng-Zhong Liu(刘生忠). Chin. Phys. B, 2021, 30(2): 028103.
No Suggested Reading articles found!