Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034303    DOI: 10.1088/1674-1056/ab69ee
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bubble translation driven by pulsation in a double-bubble system

Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英)
Key Laboratory of Modern Acoustics(Ministry of Education), Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  The pulsation and translation of two cavitation bubbles are studied numerically in sound field. The results show that bubbles' pulsation driven by the sound makes them translate. Different pulsations lead to different translations. Two bubbles will be mutually attractive to each other if they pulsate in phase, while they will be repulsive if out of phase. Furthermore, the secondary Bjerknes force for small phase difference is attractive, and it becomes repulsive for other phase differences up to π phase difference due to the nonlinear effect, although the attractive strength between two bubbles is much larger than the repulsive strength. Finally, one bubble pulsation and the other bubble stationary make the bubbles repel each other.
Keywords:  double bubble dynamics      pulsation      translation      phase difference  
Received:  17 December 2019      Revised:  08 January 2020      Accepted manuscript online: 
PACS:  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  43.25.+y (Nonlinear acoustics)  
  47.55.dp (Cavitation and boiling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11574150 and 11334005).
Corresponding Authors:  Wei-Zhong Chen     E-mail:  wzchen@nju.edu.cn

Cite this article: 

Ling-Ling Zhang(张玲玲), Wei-Zhong Chen(陈伟中), Yuan-Yuan Zhang(张圆媛), Yao-Rong Wu(武耀蓉), Xun Wang(王寻), Guo-Ying Zhao(赵帼英) Bubble translation driven by pulsation in a double-bubble system 2020 Chin. Phys. B 29 034303

[1] Leighton T G 1997 The Acoustic Bubble (San Diego: Academic Press)
[2] Ilinskii Y A and Zabolotskaya E A 1992 J. Acoust. Soc. Am. 92 2837
[3] Plesset M S and Prosperetti A 1977 Annu. Rev. Fluid Mech. 9 145
[4] Keller J B and Miksis M 1980 J. Acoust. Soc. Am. 68 628
[5] Bjerknes V F K 1906 Fields of Force (New York: Columbia University Press)
[6] Bjerknes V F K 1909 Die Krafifelder (Braunschweig: Vieweg und Sohn)
[7] Mo R Y, Wang C H, Hu J and Chen S 2019 Acta Phys. Sin. 68 144302 (in Chinese)
[8] Mettin R, Akhatov I, Parlitz U, Ohl C D and Lauterborn W 1997 Phys. Rev. E 56 2924
[9] Wu Y R and Wang C H 2017 Chin. Phys. B 26 114303
[10] Ida M 2002 Phys. Lett. A 297 210
[11] Chew L W, Klaseboer E, Ohl S W and Khoo B C 2011 Phys. Rev. E 84 066307
[12] Cai C L, Yu J, Tu J, Guo X S, Huang P T and Zhang D 2018 Chin. Phys. B 27 084302
[13] Ma Y, Lin S Y and Xu J 2017 Acta Phys. Sin. 66 034301 (in Chinese)
[14] Miao B Y and An Y 2015 Acta Phys. Sin. 64 204301 (in Chinese)
[15] Hamilton M F, Ilinskii Y A, Douglas Meegan G and Zabolotskaya E A 2005 J. Acoust. Soc. Am. 6 207
[16] Qing H M and Narenmandula 2019 Acta Phys. Sin. 68 234302 (in Chinese)
[17] Ida M 2007 Phys. Rev. E 76 046309
[18] Zhang P L, Lin S Y, Zhu H Z and Zhang T 2019 Acta Phys. Sin. 68 134301 (in Chinese)
[19] Wang C H, Mo R Y, Hu J and Chen S 2015 Acta Phys. Sin. 64 234301 (in Chinese)
[20] Calisto H, Clerc M, Rojas R and Tirapegui E 2000 Phys. Rev. Lett. 85 3805
[21] Liang J F, Chen W Z, Shao W H and Qi S B 2012 Chin. Phys. Lett. 29 074701
[22] Cui W C, Chen W Z, Qi S B, Zhao C and Tu J 2012 J. Acoust. Soc. Am. 132 138
[23] Doinikov A A 2001 Phys. Rev. E 64 026301
[24] Oguz H N and Prosperetti A 1990 J. Fluid Mech. 218 143
[25] Franc J P and Michel J M 2004 Fundamentals of Cavitation (Netherlands: Kluwer Academic Publisher)
[26] Levich B V 1962 Physicochemical Hydrodynamics (Englewood Cliffs: Prentice-Hall)
[27] Hay T A, Hamilton M F, Ilinskii Y A and Zabolotskaya E A 2009 J. Acoust. Soc. Am. 125 1331
[1] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[2] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[3] Effect of nonlinear translations on the pulsation of cavitation bubbles
Lingling Zhang(张玲玲), Weizhong Chen(陈伟中), Yang Shen(沈阳), Yaorong Wu(武耀蓉), Guoying Zhao(赵帼英), and Shaoyang Kou(寇少杨). Chin. Phys. B, 2022, 31(4): 044303.
[4] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[5] The optical nonreciprocal response based on a four-mode optomechanical system
Jing Wang(王婧). Chin. Phys. B, 2020, 29(3): 034210.
[6] Effect of the fluctuant acoustic channel on the gain of a linear array in the ocean waveguide
Lei Xie(谢磊), Chao Sun(孙超), Guang-Yu Jiang(蒋光禹), Xiong-Hou Liu(刘雄厚), De-Zhi Kong(孔德智). Chin. Phys. B, 2018, 27(11): 114301.
[7] Analysis of the injection-locked magnetron with a mismatched circulator
Yue Song (岳松), Zhang Zhao-Chuan (张兆传), Gao Dong-Ping (高冬平). Chin. Phys. B, 2014, 23(8): 088402.
[8] Study of a millimeter-wave squint indirect holographic algorithm suitable for imaging with large field-of-view
Gao Xiang (高翔), Li Chao (李超), Fang Guang-You (方广有). Chin. Phys. B, 2014, 23(2): 028401.
[9] Equivalent comparison and analysis between different nominal frequencies
Li Zhi-Qi (李智奇), Wei Zhong (韦中), Zhou Wei (周渭), Song Hui-Min (宋慧敏), Lu Wei-Hao (鲁伟昊). Chin. Phys. B, 2014, 23(11): 110602.
[10] A sensitive method of determining optic axis azimuth based on laser feedback
Wu Yun (吴云), Zhang Peng (张鹏), Chen Wen-Xue (陈文学), Tan Yi-Dong (谈宜东). Chin. Phys. B, 2013, 22(12): 124205.
[11] Generation and classification of the translational shape-invariant potentials based on the analytical transfer matrix method
Sang Ming-Huang(桑明煌), Yu Zi-Xing(余子星), Li Cui-Cui(李翠翠), and Tu Kai(涂凯) . Chin. Phys. B, 2011, 20(12): 120304.
[12] Translation invariant tensor product states in a finite lattice system
Cai Jian-Wei(蔡建伟), Chen Qiao-Ni(陈巧妮), Zhao Hui-Hai(赵汇海), Xie Zhi-Yuan(谢志远), Qin Ming-Pu(秦明普), Wei Zhong-Chao(魏忠超), and Xiang Tao(向涛) . Chin. Phys. B, 2011, 20(11): 117501.
[13] Effect of atomic initial phase difference on spontaneous emission of an atom embedded in photonic crystal
Zhang Bing(张冰), Sun Xiu-Dong(孙秀冬), and Jiang Xiang-Qian(姜向前). Chin. Phys. B, 2010, 19(8): 083201.
[14] The spatial properties of atomic Raman--Nath diffraction
Li Li-Ping(李利平), Zhang Li-Yan (张利彦), Song Pei-Jun(宋佩君), Xie Xiao-Tao(谢小涛), and Li Wei-Bin(李伟斌) . Chin. Phys. B, 2007, 16(8): 2428-2432.
[15] Computer simulation of symmetrical tilt grain boundaries in noble metals with MAEAM
Zhang Jian-Min(张建民), Huang Yu-Hong(黄育红), Xu Ke-Wei(徐可为), and Ji Vincent. Chin. Phys. B, 2007, 16(1): 210-216.
No Suggested Reading articles found!