Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 026102    DOI: 10.1088/1674-1056/ab6204
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Composition effect on elastic properties of model NiCo-based superalloys

Weijie Li(李伟节)1,2, Chongyu Wang(王崇愚)1
1 Department of Physics, Tsinghua University, Beijing 100084, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys. Compositional effects on elastic properties of the γ and γ' phases in newly-developed NiCo-based superalloys were investigated by first-principles calculation combined with special quasi-random structures. The lattice constant, bulk modulus, and elastic constants vary linearly with the Co concentration in the NiCo solution. In the selected (Ni, Co)3(Al, W) and (Ni, Co)3(Al, Ti) model γ' phase, the lattice constant, and bulk modulus show a linear trend with alloying element concentrations. The addition of Co, Ti, and W can regulate lattice mismatch and increase the bulk modulus, simultaneously. W-addition shows excellent performance in strengthening the elastic properties in the γ' phase. Systems become unstable with higher W and Ni contents, e.g., (Ni0.75Co0.25)3(Al0.25 W0.75), and become brittle with higher W and Co addition, e.g., Co3(Al0.25 W0.75). Furthermore, Co, Ti, and W can increase the elastic constants on the whole, and such high elastic constants always correspond to a high elastic modulus. The anisotropy index always corresponds to the nature of Young's modulus in a specific direction.
Keywords:  NiCo-based superalloys      elastic constants      special quasi-random structures (SQS)      directional Young's modulus  
Received:  07 June 2019      Revised:  13 December 2019      Accepted manuscript online: 
PACS:  61.82.Bg (Metals and alloys)  
  62.20.-x (Mechanical properties of solids)  
  63.50.Gh (Disordered crystalline alloys)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701502).
Corresponding Authors:  Chongyu Wang     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Weijie Li(李伟节), Chongyu Wang(王崇愚) Composition effect on elastic properties of model NiCo-based superalloys 2020 Chin. Phys. B 29 026102

[1] Gu Y, Harada H, Cui C, Ping D, Sato A and Fujioka J 2006 Scr. Mater. 55 815
[2] Gu Y F, Cui C, Ping D, Harada H, Fukuda T and Fujioka J 2009 Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. 510-511 250
[3] Knop M, Mulvey P, Ismail F, Radecka A, Rahman K M, Lindley T C, Shollock B A, Hardy M C, Moody M P, Martin T L, Bagot P A J and Dye D 2014 Jom 66 2495
[4] Cui C Y, Gu Y F, Yuan Y, Osada T and Harada H 2011 Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. 528 5465
[5] Zhu J, Titus M S and Pollock T M 2014 J. Phase Equilibria Diffus. 35 595
[6] Sidnov K, Belov D, Ponomareva A, Abrikosov I, Zharmukhambetova A, Skripnyak N, Barannikova S, Rogachev A, Rouvimov S and Mukasyan A 2016 J. Alloys Compd. 688 534
[7] Zenk C H, Neumeier S, Engl N M, Fries S G, Dolotko O, Weiser M, Virtanen S and Göken M 2016 Scr. Mater. 112 83
[8] Jones N G, Christofidou K A, Mignanelli P M, Minshull J P, Hardy M C and Stone H J 2014 Mater. Sci. Technol. 30 1853
[9] Cui C Y, Gu Y F, Ping D H and Harada H 2008 Intermetallics 16 910
[10] Llewelyn S C H, Christofidou K A, Araullo-Peters V J, Jones N G, Hardy M C, Marquis E A and Stone H J 2017 Acta Mater. 131 296
[11] Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R and Ishida K 2006 Science 312 90
[12] Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
[13] Soven P 1967 Phys. Rev. 156 809
[14] Sanchez J M, Ducastelle F and Gratias D 1984 Physica A: Stat. Mech. Its Appl. 128 334
[15] Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
[16] Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
[17] Cowley J M 1950 Phys. Rev. 77 669
[18] Vitos L 2007 Computational quantum mechanics for materials engineers: the EMTO method and applications (Springer Science & Business Media)
[19] Moakher M and Norris A N 2006 J. Elasticity 85 215
[20] Browaeys J T and Chevrot S 2004 Geophys. J. Int. 159 667
[21] von Pezold J, Dick A, Friák M and Neugebauer J 2010 Phys. Rev. B 81 094203
[22] Grimvall G 1999 Thermophysical properties of materials (Elsevier)
[23] Nye J F 1985 Physical properties of crystals: their representation by tensors and matrices (Oxford University Press)
[24] Krenn C R, Roundy D, Morris J W and Cohen M L 2001 Mater. Sci. Eng. A 317 44
[25] Jahnátek M, Hafner J and Krajčí M 2009 Phys. Rev. B 79 224103
[26] Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713
[27] Voigt W 1889 Ann. Phys. 274 573
[28] Reuss A 1929 ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mechanik 9 49
[29] Hill R 1952 Proc. Phys. Society. Sect. A 65 349
[30] Pugh S F 1954 London Edinburgh Dublin Philos. Mag. J. Sci. 45 823
[31] van de Walle A, Asta M and Ceder G 2002 Calphad 26 539
[32] van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q and Liu Z K 2013 Calphad-Comput. Coupling Phase Diagrams Thermochemistry 42 13
[33] van de Walle A 2009 Calphad-Comput. Coupling Phase Diagrams Thermochemistry 33 266
[34] Murnaghan F 1944 Proc. Natl. Acad. Sci. 30 244
[35] Zhang W, Lin J, Xu W, Fu H and Yang G 2017 Tsinghua Sci. Technol. 22 675
[36] Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
[37] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[38] Blöchl P E 1994 Phys. Rev. B 50 17953
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Kittel C 1996 Introduction to Solid State Physics
[41] Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
[42] Mehl M J, Klein B M and Papaconstantopoulos D 1995 Intermetalic Compounds: Principles and Practice, Vol. 1, pp. 195-210
[43] Yoo M H 1987 Acta Metall. 35 1559
[44] Yao Q, Xing H and Sun J 2006 Appl. Phys. Lett. 89 161906
[45] Jiang C 2008 Scr. Mater. 59 1075
[46] Tanaka K, Ohashi T, Kishida K and Inui H 2007 Appl. Phys. Lett. 91 181907
[47] Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
[48] Nathal M 1987 Metall. Trans. A 18 1961
[49] Miedema A R, Boer F R D and Chatel P F D 1973 J. Phys. F: Met. Phys. 3 1558
[50] Rose J H and Shore H B 1993 Phys. Rev. B 48 18254
[51] Mishra N S and Ranganathan S 1995 Acta Metall. Mater. 43 2287
[52] Born M and Huang K 1954 Dynamical theory of crystal lattices (Clarendon Press)
[53] Gui C, Sato A, Gu Y and Harada H 2005 Metall. Mater. Trans. A 36 2921
[54] Wang H, Zhang Z D, Wu R Q and Sun L Z 2013 Acta Mater. 61 2919
[55] Wang F, Holec D, Odén M, Mücklich F, Abrikosov I A and Tasnádi F 2017 Acta Materialia 127 124
[56] Pettifor D G 1992 Mater. Sci. Technol. 8 345
[57] Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583
[58] Eberhart M E 1996 Acta Mater. 44 2495
[1] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[2] Structural, electronic, elastic, and thermal properties of CaNiH3 perovskite obtained from first-principles calculations
S Benlamari, H Bendjeddou, R Boulechfar, S Amara Korba, H Meradji, R Ahmed, S Ghemid, R Khenata, S Bin Omran. Chin. Phys. B, 2018, 27(3): 037104.
[3] First-principles calculations on elastic, magnetoelastic, and phonon properties of Ni2FeGa magnetic shape memory alloys
Wangqiang He(贺王强), Houbing Huang(黄厚兵), Zhuhong Liu(柳祝红), Xingqiao Ma(马星桥). Chin. Phys. B, 2018, 27(1): 016201.
[4] Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)
Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军). Chin. Phys. B, 2018, 27(1): 017103.
[5] First-principles study of the new potential photovoltaic absorber: Cu2MgSnS4 compound
Belmorsli Bekki, Kadda Amara, Mohammed El Keurti. Chin. Phys. B, 2017, 26(7): 076201.
[6] First-principles investigation of the effects of strain on elastic, thermal, and optical properties of CuGaTe2
Li Xue(薛丽), Yi-Ming Ren(任一鸣), Jun-Rong He(何俊荣), Si-Liu Xu(徐四六). Chin. Phys. B, 2017, 26(6): 067103.
[7] Effects of pressure on structural, electronic, and mechanical properties of α, β, and γ uranium
Hui-Jie Zhang(张慧杰), Shi-Na Li(李世娜), Jing-Jing Zheng(郑晶晶), Wei-Dong Li(李卫东), Bao-Tian Wang(王保田). Chin. Phys. B, 2017, 26(6): 066104.
[8] Mechanical properties of GaxIn1-xAsyP1-y/GaAs systemat different temperatures and pressures
A. R. Degheidy, E. B. Elkenany. Chin. Phys. B, 2015, 24(9): 094302.
[9] Accurate calculations of the high-pressure elastic constants based on the first-principles
Wang Chen-Ju (王臣菊), Gu Jian-Bing (顾建兵), Kuang Xiao-Yu (邝小渝), Yang Xiang-Dong (杨向东). Chin. Phys. B, 2015, 24(8): 086201.
[10] Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure
Zhang Wei (张伟), Chen Qing-Yun (陈青云), Zeng Zhao-Yi (曾召益), Cai Ling-Cang (蔡灵仓). Chin. Phys. B, 2015, 24(10): 107101.
[11] Structural, electronic, optical, elastic properties and Born effective charges of monoclinic HfO2 from first-principles calculations
Liu Qi-Jun (刘其军), Zhang Ning-Chao (张宁超), Liu Fu-Sheng (刘福生), Liu Zheng-Tang (刘正堂). Chin. Phys. B, 2014, 23(4): 047101.
[12] Elastic and thermodynamic properties of vanadium nitride under pressure and the effect of metallic bonding on its hardness
Pu Chun-Ying (濮春英), Zhou Da-Wei (周大伟), Bao Dai-Xiao (包代小), Lu Cheng (卢成), Jin Xi-Lian (靳希联), Su Tai-Chao (宿太超), Zhang Fei-Wu (张飞武). Chin. Phys. B, 2014, 23(2): 026201.
[13] First-principles investigation on the structural and elastic properties of cubic-Fe2 TiAl under high pressures
Liu Xian-Kun (刘显坤), Liu Cong (刘聪), Zheng Zhou (郑洲), Lan Xiao-Hua (兰晓华). Chin. Phys. B, 2013, 22(8): 087102.
[14] Ab initio calculations of the elastic, electronic, optical, and vibrational properties of PdGa compound under pressure
H. Koc, A. Yildirim, E. Deligoz. Chin. Phys. B, 2012, 21(9): 097102.
[15] First-principles study of the elastic constants and optical properties of uranium metal
Chen Qiu-Yun (陈秋云), Tan Shi-Yong (谭世勇), Lai Xin-Chun (赖新春), Chen Jun (陈军). Chin. Phys. B, 2012, 21(8): 087801.
No Suggested Reading articles found!