CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Composition effect on elastic properties of model NiCo-based superalloys |
Weijie Li(李伟节)1,2, Chongyu Wang(王崇愚)1 |
1 Department of Physics, Tsinghua University, Beijing 100084, China; 2 Institute of Applied Physics and Computational Mathematics, Beijing 100088, China |
|
|
Abstract NiCo-based superalloys exhibit higher strength and creep resistance over conventional superalloys. Compositional effects on elastic properties of the γ and γ' phases in newly-developed NiCo-based superalloys were investigated by first-principles calculation combined with special quasi-random structures. The lattice constant, bulk modulus, and elastic constants vary linearly with the Co concentration in the NiCo solution. In the selected (Ni, Co)3(Al, W) and (Ni, Co)3(Al, Ti) model γ' phase, the lattice constant, and bulk modulus show a linear trend with alloying element concentrations. The addition of Co, Ti, and W can regulate lattice mismatch and increase the bulk modulus, simultaneously. W-addition shows excellent performance in strengthening the elastic properties in the γ' phase. Systems become unstable with higher W and Ni contents, e.g., (Ni0.75Co0.25)3(Al0.25 W0.75), and become brittle with higher W and Co addition, e.g., Co3(Al0.25 W0.75). Furthermore, Co, Ti, and W can increase the elastic constants on the whole, and such high elastic constants always correspond to a high elastic modulus. The anisotropy index always corresponds to the nature of Young's modulus in a specific direction.
|
Received: 07 June 2019
Revised: 13 December 2019
Accepted manuscript online:
|
PACS:
|
61.82.Bg
|
(Metals and alloys)
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
63.50.Gh
|
(Disordered crystalline alloys)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFB0701502). |
Corresponding Authors:
Chongyu Wang
E-mail: cywang@mail.tsinghua.edu.cn
|
Cite this article:
Weijie Li(李伟节), Chongyu Wang(王崇愚) Composition effect on elastic properties of model NiCo-based superalloys 2020 Chin. Phys. B 29 026102
|
[1] |
Gu Y, Harada H, Cui C, Ping D, Sato A and Fujioka J 2006 Scr. Mater. 55 815
|
[2] |
Gu Y F, Cui C, Ping D, Harada H, Fukuda T and Fujioka J 2009 Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. 510-511 250
|
[3] |
Knop M, Mulvey P, Ismail F, Radecka A, Rahman K M, Lindley T C, Shollock B A, Hardy M C, Moody M P, Martin T L, Bagot P A J and Dye D 2014 Jom 66 2495
|
[4] |
Cui C Y, Gu Y F, Yuan Y, Osada T and Harada H 2011 Mater. Sci. Eng. A-Struct. Mater. Properties Microstruct. Process. 528 5465
|
[5] |
Zhu J, Titus M S and Pollock T M 2014 J. Phase Equilibria Diffus. 35 595
|
[6] |
Sidnov K, Belov D, Ponomareva A, Abrikosov I, Zharmukhambetova A, Skripnyak N, Barannikova S, Rogachev A, Rouvimov S and Mukasyan A 2016 J. Alloys Compd. 688 534
|
[7] |
Zenk C H, Neumeier S, Engl N M, Fries S G, Dolotko O, Weiser M, Virtanen S and Göken M 2016 Scr. Mater. 112 83
|
[8] |
Jones N G, Christofidou K A, Mignanelli P M, Minshull J P, Hardy M C and Stone H J 2014 Mater. Sci. Technol. 30 1853
|
[9] |
Cui C Y, Gu Y F, Ping D H and Harada H 2008 Intermetallics 16 910
|
[10] |
Llewelyn S C H, Christofidou K A, Araullo-Peters V J, Jones N G, Hardy M C, Marquis E A and Stone H J 2017 Acta Mater. 131 296
|
[11] |
Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R and Ishida K 2006 Science 312 90
|
[12] |
Zunger A, Wei S H, Ferreira L G and Bernard J E 1990 Phys. Rev. Lett. 65 353
|
[13] |
Soven P 1967 Phys. Rev. 156 809
|
[14] |
Sanchez J M, Ducastelle F and Gratias D 1984 Physica A: Stat. Mech. Its Appl. 128 334
|
[15] |
Bellaiche L and Vanderbilt D 2000 Phys. Rev. B 61 7877
|
[16] |
Wei S H, Ferreira L G, Bernard J E and Zunger A 1990 Phys. Rev. B 42 9622
|
[17] |
Cowley J M 1950 Phys. Rev. 77 669
|
[18] |
Vitos L 2007 Computational quantum mechanics for materials engineers: the EMTO method and applications (Springer Science & Business Media)
|
[19] |
Moakher M and Norris A N 2006 J. Elasticity 85 215
|
[20] |
Browaeys J T and Chevrot S 2004 Geophys. J. Int. 159 667
|
[21] |
von Pezold J, Dick A, Friák M and Neugebauer J 2010 Phys. Rev. B 81 094203
|
[22] |
Grimvall G 1999 Thermophysical properties of materials (Elsevier)
|
[23] |
Nye J F 1985 Physical properties of crystals: their representation by tensors and matrices (Oxford University Press)
|
[24] |
Krenn C R, Roundy D, Morris J W and Cohen M L 2001 Mater. Sci. Eng. A 317 44
|
[25] |
Jahnátek M, Hafner J and Krajčí M 2009 Phys. Rev. B 79 224103
|
[26] |
Roundy D, Krenn C R, Cohen M L and Morris J W 1999 Phys. Rev. Lett. 82 2713
|
[27] |
Voigt W 1889 Ann. Phys. 274 573
|
[28] |
Reuss A 1929 ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mechanik 9 49
|
[29] |
Hill R 1952 Proc. Phys. Society. Sect. A 65 349
|
[30] |
Pugh S F 1954 London Edinburgh Dublin Philos. Mag. J. Sci. 45 823
|
[31] |
van de Walle A, Asta M and Ceder G 2002 Calphad 26 539
|
[32] |
van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q and Liu Z K 2013 Calphad-Comput. Coupling Phase Diagrams Thermochemistry 42 13
|
[33] |
van de Walle A 2009 Calphad-Comput. Coupling Phase Diagrams Thermochemistry 33 266
|
[34] |
Murnaghan F 1944 Proc. Natl. Acad. Sci. 30 244
|
[35] |
Zhang W, Lin J, Xu W, Fu H and Yang G 2017 Tsinghua Sci. Technol. 22 675
|
[36] |
Kresse G and Hafner J 1994 J. Phys.: Condens. Matter 6 8245
|
[37] |
Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
|
[38] |
Blöchl P E 1994 Phys. Rev. B 50 17953
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Kittel C 1996 Introduction to Solid State Physics
|
[41] |
Wu Q and Li S 2012 Comput. Mater. Sci. 53 436
|
[42] |
Mehl M J, Klein B M and Papaconstantopoulos D 1995 Intermetalic Compounds: Principles and Practice, Vol. 1, pp. 195-210
|
[43] |
Yoo M H 1987 Acta Metall. 35 1559
|
[44] |
Yao Q, Xing H and Sun J 2006 Appl. Phys. Lett. 89 161906
|
[45] |
Jiang C 2008 Scr. Mater. 59 1075
|
[46] |
Tanaka K, Ohashi T, Kishida K and Inui H 2007 Appl. Phys. Lett. 91 181907
|
[47] |
Denton A R and Ashcroft N W 1991 Phys. Rev. A 43 3161
|
[48] |
Nathal M 1987 Metall. Trans. A 18 1961
|
[49] |
Miedema A R, Boer F R D and Chatel P F D 1973 J. Phys. F: Met. Phys. 3 1558
|
[50] |
Rose J H and Shore H B 1993 Phys. Rev. B 48 18254
|
[51] |
Mishra N S and Ranganathan S 1995 Acta Metall. Mater. 43 2287
|
[52] |
Born M and Huang K 1954 Dynamical theory of crystal lattices (Clarendon Press)
|
[53] |
Gui C, Sato A, Gu Y and Harada H 2005 Metall. Mater. Trans. A 36 2921
|
[54] |
Wang H, Zhang Z D, Wu R Q and Sun L Z 2013 Acta Mater. 61 2919
|
[55] |
Wang F, Holec D, Odén M, Mücklich F, Abrikosov I A and Tasnádi F 2017 Acta Materialia 127 124
|
[56] |
Pettifor D G 1992 Mater. Sci. Technol. 8 345
|
[57] |
Nakashima P N H, Smith A E, Etheridge J and Muddle B C 2011 Science 331 1583
|
[58] |
Eberhart M E 1996 Acta Mater. 44 2495
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|