1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China; 2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Abstract We propose a vectorial optical field generation system based on two-dimensional blazed grating to high-efficiently generate structured optical fields with prescribed amplitude, phase, and polarization. In this system, an optimized blazed grating hologram is written on a spatial light modulator (SLM) and can diffract the majority of the incident light into the first-order diffractions of the x and y directions, which then serve as base vectors for synthesizing desired vector beams. Compared with the conventional cosine grating used in the previous work, the proposed two-dimensional, blazed grating has a much higher efficiency. Both computer simulation and optical experiment validate that a conversion efficiency up to 5 times that of the former work is achieved. Our method can facilitate applications of the optical field manipulation.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750202 and 11534006) and the National Key R&D Program of China (Grant Nos. 2018YFA0306200 and 2017YFA0303700).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.