Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 014208    DOI: 10.1088/1674-1056/ab5a3b
Special Issue: SPECIAL TOPIC — Optical field manipulation
SPECIAL TOPIC—Optical field manipulation Prev   Next  

Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating

Xinyi Wang(王心怡)1, Yuan Gao(高源)1, Zhaozhong Chen(陈召忠)1, Jianping Ding(丁剑平)1,2,3, Hui-Tian Wang(王慧田)1,2
1 National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China;
3 Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, Nanjing University, Nanjing 210093, China
Abstract  We propose a vectorial optical field generation system based on two-dimensional blazed grating to high-efficiently generate structured optical fields with prescribed amplitude, phase, and polarization. In this system, an optimized blazed grating hologram is written on a spatial light modulator (SLM) and can diffract the majority of the incident light into the first-order diffractions of the x and y directions, which then serve as base vectors for synthesizing desired vector beams. Compared with the conventional cosine grating used in the previous work, the proposed two-dimensional, blazed grating has a much higher efficiency. Both computer simulation and optical experiment validate that a conversion efficiency up to 5 times that of the former work is achieved. Our method can facilitate applications of the optical field manipulation.
Keywords:  diffraction      polarization      holographic gratings      liquid-crystal devices  
Received:  30 August 2019      Revised:  23 October 2019      Accepted manuscript online: 
PACS:  42.25.Fx (Diffraction and scattering)  
  42.25.Ja (Polarization)  
  42.40.Eq (Holographic optical elements; holographic gratings)  
  42.79.Kr (Display devices, liquid-crystal devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 91750202 and 11534006) and the National Key R&D Program of China (Grant Nos. 2018YFA0306200 and 2017YFA0303700).
Corresponding Authors:  Jianping Ding     E-mail:  jpding@nju.edu.cn

Cite this article: 

Xinyi Wang(王心怡), Yuan Gao(高源), Zhaozhong Chen(陈召忠), Jianping Ding(丁剑平), Hui-Tian Wang(王慧田) Dynamic shaping of vectorial optical fields based on two-dimensional blazed holographic grating 2020 Chin. Phys. B 29 014208

[1] Zhan Q 2009 Adv. Opt. Photon. 1 1
[2] Lou K, Qian S X, Ren Z C, Tu C, Li Y and Wang H T 2013 Sci. Rep. 3 2281
[3] Moh K J, Yuan X C, Bu J, Zhu S W and Gao B Z 2009 Opt. Lett. 34 971
[4] Kenny F, Lara D, Rodríguez-Herrera O G and Dainty C 2012 Opt. Express 20 14015
[5] Chen W and Zhan Q 2010 J. Opt. 12 045707
[6] Kozawa Y and Sato S 2010 Opt. Express 18 10828
[7] Zhang L, Qiu X, Zeng L and Chen L 2019 Chin. Phys. B 28 094202
[8] Arrizón V, Méndez G and Sánchez-de-La-Llave D 2005 Opt. Express 13 7913
[9] van Putten E G, Vellekoop I M and Mosk A P 2008 Appl. Opt. 47 2076
[10] Chen H, Hao J, Zhang B, Xu J, Ding J and Wang H T 2011 Opt. Lett. 36 3179
[11] Han W, Yang Y, Cheng W and Zhan Q 2013 Opt. Express 21 20692
[12] Chen H, Ling X H, Chen Z H, Li Q G, Lv H, Yu H Q and Yi X N 2016 Chin. Phys. B 25 074201
[13] Waller E H and von Freymann G 2013 Opt. Express 21 28167
[14] Moreno I, Davis J A, Hernandez T M, Cottrell D M and Sand D 2012 Opt. Express 20 364
[15] Wang X L, Ding J, Ni W J, Guo C S and Wang H T 2007 Opt. Lett. 32 3549
[16] Yu Z, Chen H, Chen Z, Hao J and Ding J 2015 Opt. Commun. 345 135
[17] Chen Z, Zeng T, Qian B and Ding J 2015 Opt. Express 23 17701
[18] Yi X, Liu Y, Ling X, Zhou X, Ke Y, Luo H, Wen S and Fan D 2015 Phys. Rev. A 91 023801
[19] Gao Y, Chen Z, Ding J and Wang H T 2019 Appl. Opt. 58 6591
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[3] A three-band perfect absorber based on a parallelogram metamaterial slab with monolayer MoS2
Wen-Jing Zhang(张雯婧), Qing-Song Liu(刘青松), Bo Cheng(程波), Ming-Hao Chao(晁明豪),Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2023, 32(3): 034211.
[4] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[5] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[6] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[7] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[10] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[11] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[12] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[13] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[14] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!