Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 014207    DOI: 10.1088/1674-1056/20/1/014207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Long- and short-term average intensity for multi-Gaussian beam with a common axis in turbulence

Chu Xiu-Xiang(储修祥)
College of Sciences, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
Abstract  With the help of the extended Huygens–Fresnel principle and the short-term mutual coherence function, the analytical formula of short-term average intensity for multi-Gaussian beam (MGB) in the turbulent atmosphere has been derived. The intensity in the absence of turbulence and the long-term average intensity in turbulence can both also be expressed in this formula. As special cases, comparisons among short-term average intensity, long-term average intensity, and the intensity in the absence of turbulence for flat topped beam and annular beam are carried out. The effects of the order of MGB, propagation distance and aperture radius on beam spreading are analysed and discussed in detail.
Keywords:  multi-Gaussian beam      turbulence      short-term average intensity  
Received:  19 May 2010      Revised:  19 June 2010      Accepted manuscript online: 
PACS:  42.68.Bz (Atmospheric turbulence effects)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Kb (Coherence)  

Cite this article: 

Chu Xiu-Xiang(储修祥) Long- and short-term average intensity for multi-Gaussian beam with a common axis in turbulence 2011 Chin. Phys. B 20 014207

[1] Noll R J 1976 Opt. Soc. Am. 66 207
[2] Yura H T 1973 J. Opt. Soc. Am. 63 567
[3] Cai Y and He S 2006 Opt. Express 14 1353
[4] Cai Y and He S 2006 Appl. Phys. Lett. 89 041117
[5] Du X, Zhao D and Korotkova O 2007 Opt. Express 15 16909
[6] Du X and Zhao D 2008 Opt. Express 16 16172
[7] Eyyubovglu H T and Baykal Y 2004 Opt. Express 12 4659
[8] Eyyubovglu H T, Arpali C and Baykal Y 2006 Opt. Express 14 4196
[9] Chu X, Liu Z and Wu Y 2008 J. Opt. Soc. Am. A 25 74
[10] Chu X 2007 Opt. Express 24 17613
[11] Zhu Y, Zhao D and Du X 2008 Opt. Express 16 18437
[12] Ma J, Gao C and Tan L Y 2007 Chin. Phys. 16 1327
[13] Rao R Z 2009 Chin. Phys. B 18 581
[14] Ji X L and Pu Z C 2010 Chin. Phys. B 19 029201
[15] Zhang E T, Ji X L and L"u B D 2009 Chin. Phys. B 18 571
[16] Chen B and Pu J 2009 Chin. Phys. B 18 1033
[17] Fan T Y 2005 IEEE J. Sel. Quantum Electron.11 567
[18] Chu X and Liu Z 2010 Appl. Opt. 49 204
[19] Wen J J and Breazeale M A1988 J. Acoust. Soc. Am. 83 1752
[20] Mei Z, Zhao D and Gu J 2006 Opt. Commun. 267 58
[21] Li Y 2002 Opt. Lett. 27 1007 endfootnotesize
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[3] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[4] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[5] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[6] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[7] The role of velocity derivative skewness in understanding non-equilibrium turbulence
Feng Liu(刘锋), Le Fang(方乐), and Liang Shao(邵亮)$. Chin. Phys. B, 2020, 29(11): 114702.
[8] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[9] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[10] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[11] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[12] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[13] Turbulence modulation model for gas-particle flow based on probability density function approach
Lu Wang(王路), Jiang-rong Xu(徐江荣). Chin. Phys. B, 2017, 26(8): 084702.
[14] Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Xiao-Xing Feng(冯晓星), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2017, 26(6): 064202.
[15] Propagation factor of electromagnetic concentric rings Schell-model beams in non-Kolmogorov turbulence
Zhen-Zhen Song(宋真真), Zheng-Jun Liu(刘正君), Ke-Ya Zhou(周可雅), Qiong-Ge Sun(孙琼阁), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(2): 024201.
No Suggested Reading articles found!