Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(2): 024203    DOI: 10.1088/1674-1056/19/2/024203
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Consistency of the directionality of partially coherent beams inturbulence expressed in terms of the angular spread and the far-field average intensity

Chen Xiao-Wen(陈晓文) and Ji Xiao-Ling(季小玲)
Department of Physics, Sichuan Normal University, Chengdu 610068, China
Abstract  Under the quadratic approximation of the Rytov's phase structure function, this paper derives the general closed-form expressions for the mean-squared width and the angular spread of partially coherent beams in turbulence. It finds that under a certain condition different types of partially coherent beams may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence if the angular spread is chosen as the characteristic parameter of beam directionality. On the other hand, it shows that generally, the directionality of partially coherent beams expressed in terms of the angular spread is not consistent with that in terms of the normalized far-field average intensity distribution in free space, but the consistency can be achieved due to turbulence.
Keywords:  turbulence      partially coherent beam      angular spread      far-field average intensity  
Received:  23 December 2008      Revised:  26 May 2009      Accepted manuscript online: 
PACS:  42.68.Bz (Atmospheric turbulence effects)  
  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  02.30.Mv (Approximations and expansions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~60778048).

Cite this article: 

Chen Xiao-Wen(陈晓文) and Ji Xiao-Ling(季小玲) Consistency of the directionality of partially coherent beams inturbulence expressed in terms of the angular spread and the far-field average intensity 2010 Chin. Phys. B 19 024203

[1] Collett E and Wolf E 1978 Opt. Lett. 2 27
[2] Wolf E and Collett E 1978 Opt. Commun. 25 293
[3] Santis P D, Gori F, Guattari G and Palma C 1979 Opt. Commun. 29 256
[4] Farina J D, Narducci L M and Collett E 1980 Opt. Commun. 32 203
[5] Andrews L C and Phillips R L 1998 Laser Beam Propagation Through Random Media (Bellingham, WA: SPIE)
[6] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[7] Dogariu A and Amarande S 2003 Opt. Lett. 28 10
[8] Eyyubo?lu H T and Baykal Y 2007 Opt. Commun. 278 17
[9] Wang T and Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese)
[10] Ji X L, Huang T X and Lü B D 2006 Acta Phys. Sin. 55 978 (in Chinese)
[11] Zhang E T, Ji X L and Lü B D 2009 Chin. Phys. B 18 571
[12] Ji X L, Xiao X and Lü B D 2004 Acta Phys. Sin. 5 3 3996 (in Chinese)
[13] Shirai T, Dogariu A and Wolf E 2003 Opt. Lett. 28 610.
[14] Yang A L, Zhang E T, Ji X L and Lü B D 2008 Opt. Express 16 8366
[15] Ji X L, Chen X W and Lü B D 2008 J. Opt. Soc. Am. A 25 21
[16] Chen X W and Ji X L 2008 Opt. Commun. 281 4765
[17] Foley J T and Zubairy M S 1978 Opt. Commun. 26 297.
[18] Lü S Y and Lü B D 2008 Opt. Commun. 281 3514
[19] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics(Cambridge: Cambridge University Press)
[20] Wang S C H and Plonus M A 1979 J. Opt. Soc. Am. 69 1297
[21] Leader J C 1978 J. Opt. Soc. Am. 68 175
[22] Cai Y J and He S 2006 Opt. Express 141353
[23] Gbur G and Wolf E 2001 Opt. Commun. 199 295
[24] Li Y 2002 Opt. Commun. 206 225
[25] Qiu Y, Guo H and Chen Z 2005 Opt. Commun. 245 21
[26] Cai Y J and Zhang L 2006 J. Opt. Soc. Am. B 23 1398
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[5] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[6] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[7] Non-Gaussian statistics of partially coherent light inatmospheric turbulence
Hao Ni(倪昊), Chunhao Liang(梁春豪), Fei Wang(王飞), Yahong Chen(陈亚红), Sergey A. Ponomarenko, Yangjian Cai(蔡阳健). Chin. Phys. B, 2020, 29(6): 064203.
[8] The role of velocity derivative skewness in understanding non-equilibrium turbulence
Feng Liu(刘锋), Le Fang(方乐), and Liang Shao(邵亮)$. Chin. Phys. B, 2020, 29(11): 114702.
[9] Properties of multi-Gaussian Schell-model beams carrying an edge dislocation propagating in oceanic turbulence
Da-Jun Liu(刘大军), Yao-Chuan Wang(王耀川), Gui-Qiu Wang(王桂秋), Hong-Ming Yin(尹鸿鸣), Hai-Yang Zhong(仲海洋). Chin. Phys. B, 2019, 28(10): 104207.
[10] Reversed rotation of limit cycle oscillation and dynamics of low-intermediate-high confinement transition
Dan-Dan Cao(曹丹丹), Feng Wan(弯峰), Ya-Juan Hou(侯雅娟), Hai-Bo Sang(桑海波), Bai-Song Xie(谢柏松). Chin. Phys. B, 2018, 27(6): 065201.
[11] Influence of moderate-to-strong anisotropic non-Kolmogorov turbulence on intensity fluctuations of a Gaussian-Schell model beam in marine atmosphere
Mingjian Cheng(程明建), Lixin Guo(郭立新), Jiangting Li(李江挺). Chin. Phys. B, 2018, 27(5): 054203.
[12] Further analysis of scintillation index for a laser beam propagating through moderate-to-strong non-Kolmogorov turbulence based on generalized effective atmospheric spectral model
Jing Ma(马晶), Yu-Long Fu(付玉龙), Si-Yuan Yu(于思源), Xiao-Long Xie(谢小龙), Li-Ying Tan(谭立英). Chin. Phys. B, 2018, 27(3): 034201.
[13] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[14] Turbulence modulation model for gas-particle flow based on probability density function approach
Lu Wang(王路), Jiang-rong Xu(徐江荣). Chin. Phys. B, 2017, 26(8): 084702.
[15] Effect of atmospheric turbulence on entangled orbital angular momentum three-qubit state
Xiang Yan(闫香), Peng-Fei Zhang(张鹏飞), Jing-Hui Zhang(张京会), Xiao-Xing Feng(冯晓星), Chun-Hong Qiao(乔春红), Cheng-Yu Fan(范承玉). Chin. Phys. B, 2017, 26(6): 064202.
No Suggested Reading articles found!