Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(7): 076107    DOI: 10.1088/1674-1056/28/7/076107
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature

Gan Ren(任淦), Shikai Tian(田时开)
Departments of Physics & Key Laboratory of Photonic and Optical Detection in Civil Aviation, Civil Aviation Flight University of China, Guanghan 628307, China
Abstract  

The Stokes-Einstein relation D~T/η and its two variants D~τ-1 and D~T/τ follow a fractional form in supercooled liquids, where D is the diffusion constant, T the temperature, η the shear viscosity, and τ the structural relaxation time. The fractional Stokes-Einstein relation is proposed to result from the dynamic heterogeneity of supercooled liquids. In this work, by performing molecular dynamics simulations, we show that the analogous fractional form also exists in sodium chloride (NaCl) solutions above room temperature. D~τ-1 takes a fractional form within 300-800 K; a crossover is observed in both D~T/τ and D~T/η. Both D~T/τ and D~T/η are valid below the crossover temperature Tx, but take a fractional form for T>Tx. Our results indicate that the fractional Stokes-Einstein relation not only exists in supercooled liquids but also exists in NaCl solutions at high enough temperatures far away from the glass transition point. We propose that D~T/η and its two variants should be critically evaluated to test the validity of the Stokes-Einstein relation.

Keywords:  sodium chloride solutions      supercooled liquids      molecular dynamics      Stokes-Einstein relation  
Received:  02 April 2019      Revised:  13 May 2019      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.20.Gy (Theory and models of liquid structure)  
Fund: 

Project supported by the Foundation of Civil Aviation Flight University of China (Grant Nos. J2019-059 and JG2019-19).

Corresponding Authors:  Gan Ren     E-mail:  rengan@itp.ac.cn

Cite this article: 

Gan Ren(任淦), Shikai Tian(田时开) Supercooled liquids analogous fractional Stokes-Einstein relation in NaCl solution above room temperature 2019 Chin. Phys. B 28 076107

[37] Giovambattista N, Mazza M G, Buldyrev S V, Starr F W and Stanley H E 2004 J. Phys. Chem. B 108 6655
[1] Shi Z, Debenedetti P G and Stillinger F H 2013 J. Chem. Phys. 138 12A526
[38] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[2] Swallen S F, Bonvallet P A, McMahon R J and Ediger M D 2003 Phys. Rev. Lett. 90 015901
[39] Alder B J and Wainwright T E 1967 Phys. Rev. Lett. 18 988
[3] Mapes M K, Swallen S F and Ediger M D 2006 J. Phys. Chem. B 110 507
[4] Mallamace F, Broccio M, Corsaro C, Faraone A, Wanderlingh U, Liu L, Mou C Y and Chen S H 2006 J. Chem. Phys. 124 161102
[5] Xu L, Mallamace F, Yan Z, Starr F W, Buldyrev S V and Eugene Stanley H 2009 Nat. Phys. 5 565
[6] Binder K, Kob W, Glassy materials and disordered solids: An introduction to their statistical mechanics World Scientific: 2011
[7] Habasaki J, Leon C and Ngai K 2017 Top. Appl. Phys. 132
[8] Kumar P, Buldyrev S V, Becker S R, Poole P H, Starr F W and Stanley H E 2007 Proc. Natl. Acad. Sci. 104 9575
[9] Jeong D, Choi M Y, Kim H J and Jung Y 2010 Phys. Chem. Chem. Phys. 12 2001
[10] Ikeda A and Miyazaki K 2011 Phys. Rev. Lett. 106 015701
[11] Grant E H 1957 J. Chem. Phys. 26 1575
[12] Varela L M, García M and Mosquera V c 2003 Phys. Rep. 382 1
[13] Varela L M, Garcia M and Mosquera V 2003 Phys. Rep. 382 1-111
[14] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198
[15] Onsager L and Kim S K 1957 J. Phys. Chem. 61 198
[16] Vázquez-Raygoza A, Cano-González L, Velázquez-Martínez I, Trejo-Soto P, Castillo R, Hernández-Campos A, Hernández-Luis F, Oria-Hernández J, Castillo-Villanueva A, Avitia-Domínguez C, Sierra-Campos E, Valdez-Solana M and Téllez-Valencia A 2017 Molecules 22 2055
[17] Balatti G, Ambroggio E, Fidelio G, Martini M and Pickholz M 2017 Molecules 22 1775
[18] Ishak S, Aris S, Halim K, Ali M, Leow T, Kamarudin N, Masomian M and Rahman R 2017 Molecules 22 1574
[19] Shu C, Xiao K, Cao C, Ding D and Sun X 2017 Molecules 22 1342
[20] Berendsen H J C, van der Spoel D and van Drunen R 1995 Comput. Phys. Commun. 91 43
[21] Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E and Berendsen H J 2005 J. Comput. Chem. 26 1701
[22] Brooks B R, Bruccoleri R E, Olafson B D, Swaminathan S and Karplus M 1983 J. Comput. Chem. 4 187
[23] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W and Klein M L 1983 J. Chem. Phys. 79 926
[24] Hassan S A 2008 J. Phys. Chem. B 112 10573
[25] Hassan S A 2008 Phys. Rev. E 77 031501
[26] Hassan S A 2011 J. Chem. Phys. 134 114508
[27] Essmann U, Perera L, Berkowitz M L, Darden T, Lee H and Pedersen L G 1995 J. Chem. Phys. 103 8577
[28] Nosé S 1984 J. Chem. Phys. 81 511
[29] Hoover W G 1985 Phys. Rev. A 31 1695
[30] Lee S H and Rasaiah J C 1994 J. Chem. Phys. 101 6964
[31] Anderson J, Ullo J J and Yip S 1987 J. Chem. Phys. 87 1726
[32] Bloomfield V, Dalton W and Van Holde K 1967 Biopolymers 5 135
[33] Koneshan S, Rasaiah J C, Lynden-Bell R and Lee S 1998 J. Phys. Chem. B 102 4193
[34] Becker S R, Poole P H and Starr F W 2006 Phys. Rev. Lett. 97 055901
[35] Hess B 2002 J. Chem. Phys. 116 209
[36] Berthier L 2011 Physics 4 42
[37] Giovambattista N, Mazza M G, Buldyrev S V, Starr F W and Stanley H E 2004 J. Phys. Chem. B 108 6655
[38] Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Phys. Rev. Lett. 79 2827
[39] Alder B J and Wainwright T E 1967 Phys. Rev. Lett. 18 988
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
No Suggested Reading articles found!