Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(6): 066301    DOI: 10.1088/1674-1056/28/6/066301
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical analysis of cross-plane lattice thermal conduction in graphite

Yun-Feng Gu(顾云风)
College of Electronic and Mechanical Engineering, Nanjing Forestry University, Nanjing 210037, China
Abstract  

A theoretical analysis of the cross-plane lattice thermal conduction in graphite is performed by using first-principles calculations and in the single-mode relaxation time approximation. The out-of-plane phonon acoustic mode ZA and optical mode ZO' have almost 80% and 20% of contributions to cross-plane heat transfer, respectively. However, these two branches have a small part of total specific heat above 300 K. Phonons in the central 16% of Brillouin zone contribute 80% of cross-plane transport. If the group velocity angle with respect to the graphite layer normal is less than 30circ, then the contribution is 50% at 300 K. The ZA phonons with long cross-plane mean free path are focused in the cross-plane direction, and the largest mean free path is on the order of several micrometers at room temperature. The average value of cross-plane mean free path at 300 K is 112 nm for ZA phonons with group velocity angle with respect to the layer normal being less than 15circ. The average value is dropped to 15 nm when phonons of all branches in the whole Brillouin zone are taken into account, which happens because most phonons have small or even no contributions.

Keywords:  graphite      cross-plane thermal conduction      phonon mean free path      layered systems  
Received:  07 March 2019      Revised:  27 March 2019      Accepted manuscript online: 
PACS:  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.22.Np (Layered systems)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51376094) and Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents.

Corresponding Authors:  Yun-Feng Gu     E-mail:  gu_yunfeng@sina.com

Cite this article: 

Yun-Feng Gu(顾云风) Theoretical analysis of cross-plane lattice thermal conduction in graphite 2019 Chin. Phys. B 28 066301

[1] Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y and Duan X F 2016 Nat. Rev. Mater. 1 16042
[2] Yang J K, Yang Y, Waltermire S W, Wu X X, Zhang H T, Gutu T, Jiang Y F, Chen Y F, Zinn A A, Prasher R, Xu T T and Li D Y 2012 Nat. Nanotechnol. 7 91
[3] Slack G A 1962 Phys. Rev. 127 694
[4] Taylor R 1966 Philos. Mag. 13 157
[5] Tanaka T and Suzuki H 1972 Carbon 10 253
[6] Shen M, Schelling P K and Keblinski P 2013 Phys. Rev. B 88 045444
[7] Sadeghi M M, Jo I and Shi L 2013 Proc. Natl. Acad. Sci. USA 110 16321
[8] Wei Z Y, Yang J K, Chen W Y, Bi K D, Li D Y and Chen Y F 2014 Appl. Phys. Lett. 104 081903
[9] Harb M, von Korff Schmising C, Enquist H, Jurgilaitis A, Maximov I, Shvets P V, Obraztsov A N, Khakhulin D, Wulff M and Larsson J 2012 Appl. Phys. Lett. 101 233108
[10] Fu Q, Yang J K, Chen Y F, Li D Y and Xu D Y 2015 Appl. Phys. Lett. 106 031905
[11] Zhang H, Chen X W, Jho Y D and Minnich A J 2016 Nano Lett. 16 1643
[12] Minnich A J 2012 Phys. Rev. Lett. 109 205901
[13] Yang F and Dames C 2013 Phys. Rev. B 87 035437
[14] Yang J K, Shen M, Yang Y, Evans W J, Wei Z Y, Chen W Y, Zinn A A, Chen Y F, Prasher R, Xu T T, Keblinski P and Li D Y 2014 Phys. Rev. Lett. 112 205901
[15] Han M, Liu J, Xie Y S and Wang X W 2018 Carbon 126 532
[16] Carrete J, Vermeersch B, Katre A, van Roekeghem A, Wang T, Madsen G K H and Mingo N 2017 Comput. Phys. Commun. 220 351
[17] Li W, Carrete J, Katcho N A and Mingo N 2014 Comput. Phys. Commun. 185 1747
[18] http://www.almabte.eu/index.php/database/
[19] Mohr M, Maultzsch J, Dobardzic E, Reich S, Milosevic I, Damnjanovic M, Bosak A, Krisch M and Thomsen C 2007 Phys. Rev. B 76 035439
[20] Maultzsch J, Reich S, Thomsen C, Requardt H and Ordejon P 2004 Phys. Rev. Lett. 92 075501
[21] Nicklow R, Wakabayashi N and Smith H G 1972 Phys. Rev. B 5 4951
[22] Paulatto L, Mauri F and Lazzeri M 2013 Phys. Rev. B 87 214303
[23] Hazrati E, de Wijs G A and Brocks G 2014 Phys. Rev. B 90 155448
[24] Ho C Y, Powell R W and Liley P E 1972 J. Phys. Chem. Ref. Data 1 279
[25] Incropera F P, Bergman T L, Lavine A S and Dewitt D P 2011 Fundamentals of heat and mass transfer, 7th edn. (USA: John Wiley & Sons, Inc.) p. 987
[26] Ziman J M 1960 Electrons and Phonons (Oxford: Clarendon Press) p. 48
[27] Wolfe J P 1998 Imaging phonons: acoustic wave propagation in solids (New York: Cambridge University Press) p. 60
[1] Linear and nonlinear optical response of g-C3N4-based quantum dots
Jing-Zhi Zhang(张竞之) and Hong Zhang(张红). Chin. Phys. B, 2021, 30(7): 077802.
[2] Peculiar diffusion behavior of AlCl4 intercalated in graphite from nanosecond-long molecular dynamics simulations
Qianpeng Wang(王乾鹏), Daye Zheng(郑大也), Lixin He(何力新), and Xinguo Ren(任新国). Chin. Phys. B, 2021, 30(10): 107102.
[3] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[4] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
[5] Irradiation effects of graphene and thin layer graphite induced by swift heavy ions
Zeng Jian (曾健), Liu Jie (刘杰), Zhang Sheng-Xia (张胜霞), Zhai Peng-Fei (翟鹏飞), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Guo Hang (郭航), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅). Chin. Phys. B, 2015, 24(8): 086103.
[6] Doping inhomogeneity and staging of ultra-thin graphite intercalation compound flakes probed by visible and near-infrared Raman spectroscopy
Lu Yan (鲁妍), Zhang Xin (张昕), Wu Jiang-Bin (吴江滨), Li Xiao-Li (李晓莉), Li Qiao-Qiao (厉巧巧), Tan Ping-Heng (谭平恒). Chin. Phys. B, 2015, 24(7): 077804.
[7] Raman spectrum study of graphite irradiated by swift heavy ions
Zhai Peng-Fei (翟鹏飞), Liu Jie (刘杰), Zeng Jian (曾健), Yao Hui-Jun (姚会军), Duan Jing-Lai (段敬来), Hou Ming-Dong (侯明东), Sun You-Mei (孙友梅), Ewing Rodney Charles. Chin. Phys. B, 2014, 23(12): 126105.
[8] Methane adsorption on graphite(0001) films: a first-principles study
He Man-Chao (何满潮), Zhao Jian (赵健). Chin. Phys. B, 2013, 22(1): 016802.
[9] Superior tribological properties of an amorphous carbon film with a graphite-like structure
Wang Yong-Jun(王永军), Li Hong-Xuan(李红轩), Ji Li(吉利), Liu Xiao-Hong(刘晓红), Wu Yan-Xia(吴艳霞), Zhou Hui-Di(周惠娣), and Chen Jian-Min(陈建敏) . Chin. Phys. B, 2012, 21(1): 016101.
[10] Adsorption of sodium ions and hydrated sodium ions on a hydrophobic graphite surface via cation-$\pi$ interactions
Shi Guo-Sheng(石国升), Wang Zhi-Gang(王志刚), Zhao Ji-Jun(赵纪军), Hu Jun(胡钧), and Fang Hai-Ping(方海平). Chin. Phys. B, 2011, 20(6): 068101.
[11] Field electron emission from bunchy flake-like nano-carbon films
Wang Xiao-Ping(王小平), Wang Li-Jun(王丽军), Duan Xin-Chao(段新超), Wang Long-Yang(王隆洋), Zhang Lei(张雷), Lv Cheng-Rui (吕承瑞), and Lei Tong(雷通). Chin. Phys. B, 2009, 18(5): 2078-2081.
[12] Calculation of scanning tunnelling microscopy images for Kr/graphite system
Zhou Xiao-Lin (周晓林), Chen Xiang-Rong (陈向荣), Yang Xiang-Dong (杨向东), Gou Qing-Quan (芶清泉). Chin. Phys. B, 2003, 12(9): 1011-1015.
[13] STUDY OF THE Al/GRAPHITE INTERFACE
Lu Hua (陆华), Shen Dian-hong (沈电洪), Deng Xin-fa (邓新发), Xue Qi-kun (薛其坤), N. Froumin, M. Polak. Chin. Phys. B, 2001, 10(9): 832-835.
[14] NANOBUBBLES AT THE LIQUID/SOLID INTERFACE STUDIED BY ATOMIC FORCE MICROSCOPY
Lou Shi-tao (楼柿涛), Gao Jian-xia (高剑侠), Xiao Xu-dong (萧旭东), Li Xiao-jun (李晓军), Li Guang-lai (李光来), Zhang Yi (张益), Li Min-qian (李民乾), Sun Jie-lin (孙洁林), Hu Jun (胡均). Chin. Phys. B, 2001, 10(13): 108-110.
[15] FOURIER ANALYSIS OF TEMPORAL AND SPATIAL OSCILLATIONS OF TUNNELING CURRENT IN SCANNING TUNNELING MICROSCOPY
Xie Fang-qing (谢仿卿), S. Molitor, Th. Koch, P. von Blanckenhagen. Chin. Phys. B, 2001, 10(13): 19-26.
No Suggested Reading articles found!