Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(2): 020202    DOI: 10.1088/1674-1056/28/2/020202
GENERAL Prev   Next  

Dynamics of three nonisospectral nonlinear Schrödinger equations

Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军)
Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  

Dynamics of three nonisospectral nonlinear Schrödinger equations (NNLSEs), following different time dependencies of the spectral parameter, are investigated. First, we discuss the gauge transformations between the standard nonlinear Schrödinger equation (NLSE) and its first two nonisospectral counterparts, for which we derive solutions and infinitely many conserved quantities. Then, exact solutions of the three NNLSEs are derived in double Wronskian terms. Moreover, we analyze the dynamics of the solitons in the presence of the nonisospectral effects by demonstrating how the shapes, velocities, and wave energies change in time. In particular, we obtain a rogue wave type of soliton solutions to the third NNLSE.

Keywords:  nonisospectral nonlinear Schrö      dinger equations, gauge transformations, bilinear forms, solitons, rogue waves  
Received:  26 November 2018      Revised:  18 December 2018      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
  05.45.Yv (Solitons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11601312, 11631007, and 11875040).

Corresponding Authors:  Da-Jun Zhang     E-mail:  djzhang@staff.shu.edu.cn

Cite this article: 

Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军) Dynamics of three nonisospectral nonlinear Schrödinger equations 2019 Chin. Phys. B 28 020202

[1] Zakharov V E and Shabat A B 1972 Sov. Phys. JETP 34 62
[2] Ablowitz M J, Kaup D J, Newell A C and Segur H 1973 Phys. Rev. Lett. 31 125
[3] Hirota R 1973 J. Math. Phys. 14 805
[4] Matveev V B and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer)
[5] Satsuma J 1979 J. Phys. Soc. Jpn. 46 359
[6] Nimmo J J C 1983 Phys. Lett. A 99 279
[7] Zhang D J and Hietarinta J 2005 “Generalized double-Wronskian solutions to the nonlinear Schrödinger equation”, preprint
[8] Benney D J and Newell A C 1967 J. Math. Phys. 46 133
[9] Zakharov V E 1968 J. Appl. Mech. Tech. Phys. 9 190
[10] Hasimoto H 1972 J. Fluid Mech. 51 477
[11] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[12] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[13] Zakharov V E 1972 Sov. Phys. JETP 35 908
[14] Manakov S V 1973 Zh. Eksp. Tecr. Fiz. 38 505
[15] Peregrine D H 1983 J. Austral. Math. Soc. Ser. B 25 16
[16] Eleonskii V M, Krichever I M and Kulagin N E 1986 Sov. Phys. Dokl. 31 226
[17] Akhmediev N, Ankiewicz A and Soto-Crespo J M 2009 Phys. Rev. E 80 026601
[18] Akhmediev N and Pelinovsky E 2010 Eur. Phys. J. Special Topics 185 1
[19] Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47
[20] Chen H H and Liu C S 1976 Phys. Rev. Lett. 37 693
[21] Gupta M R 1979 Phys. Lett. A 72 420
[22] Calogero F and Degasperis A 1978 Commun. Math. Phys. 63 155
[23] Hirota R and Satsuna J 1976 J. Phys. Soc. Jpn. 41 2141
[24] Li Y S 1982 Sci. Sin. Ser. A 25 911
[25] Ning T K, Chen D Y and Zhang D J 2004 Physica A 339 248
[26] Ning T K, Zhang W G and Jia G 2009 Chaos, Solitons and Fractals 42 1100
[27] Calogero F and Degasperis A 1982 The spectral transform and solitons (North Holland)
[28] Chen D Y and Zhang D J 1996 J. Math. Phys. 37 5524
[29] Burtsev S P, Zakharov V E and Mikhailov A V 1987 Theor. Math. Phys. 70 227
[30] Ma W X 1992 J. Math. Phys. 33 2464
[31] Wadati M and Sogo K 1983 J. Phys. Soc. Jpn. 52 394
[32] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419
[33] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 1653
[34] Zhang D J and Chen D Y 2004 J. Phys. A: Math. Gen. 37 851
[35] Zhang Y, Deng S F, Zhang D J and Chen D Y 2004 Physica A 339 228
[36] Sun Y P, Bi J B and Chen D Y 2005 Chaos, Solitons and Fractals 26 905
[37] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[38] Liu Q M 1990 J. Phys. Soc. Jpn. 59 3520
[39] Zhang D J 2006 “Notes on solutions in Wronskian form to soliton equations: Korteweg-de Vries-type”, arXiv: nlin.SI/0603008
[40] Zhang D J, Zhao S L, Sun Y Y and Zhou J 2014 Rev. Math. Phys. 26 14300064
[41] Guo B L, Ling L M and Liu Q P 2012 Phys. Rev. E 85 026607
[42] Ohta Y and Yang J 2012 Proc. R. Soc. A 468 1716
[43] Tao Y S, He J S and Porsezian K 2013 Chin. Phys. B 22 074210
[44] Solli D R, Ropers C, Koonath P and Jalali B 2007 Nature 450 1054
[45] Qian C, Rao J G, Liu Y B and He J S 2016 Chin. Phys. Lett. 33 110201
[46] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[47] Akhmediev N, Ankiewicz A and Taki M 2009 Phys. Lett. A 373 675
[48] Kou X 2011 “Exact solutions of two soliton equations”, Master Thesis, Shanghai University
[49] Zhu X M, Zhang D J and Chen D Y 2011 Commun. Theor. Phys. 55 13
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[5] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[6] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[7] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[8] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[9] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[13] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[14] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[15] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
No Suggested Reading articles found!