Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 098502    DOI: 10.1088/1674-1056/27/9/098502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires

Xia Guo(郭霞)1, Qiao-Li Liu(刘巧莉)2, Hui-Jun Tian(田慧军)2, Chun-Wei Guo(郭春威)2, Chong Li(李冲)2, An-Qi Hu(胡安琪)1, Xiao-Ying He(何晓颖)1, Hua Wu(武华)3
1 School of Electronic Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
3 College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
Abstract  

Silver nanowire (AgNW) networks have been demonstrated to exhibit superior transparent and conductive performance over that of indium-doped tin oxide (ITO) and have been proposed to replace ITO, which is currently widely used in optoelectronic devices despite the scarcity of indium on Earth. In this paper, the current spreading and enhanced transmittance induced by AgNWs, which are two important factors influencing the light output power, were analyzed. The enhanced transmittance was studied by finite-difference time-domain simulation and verified by cathodoluminescence measurements. The enhancement ratio of the light output power decreased as the GaP layer thickness increased, with enhancement ratio values of 79%, 52%, and 15% for GaP layer thicknesses of 0.5 μ, 1 μ, and 8 μ, respectively, when an AgNW network was included in AlGaInP light-emitting diodes. This was because of the decreased current distribution tunability of the AgNW network with the increase of the GaP layer thickness. The large enhancement of the light output power was caused by the AgNWs increasing carrier spread out of the electrode and the enhanced transmittance induced by the plasmonic AgNWs. Further decreasing the sheet resistance of AgNW networks could raise their light output power enhancement ratio.

Keywords:  surface plasmon      current spreading      silver nanowire      light-emitting diode  
Received:  03 May 2018      Revised:  30 May 2018      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.60.Jb (Light-emitting devices)  
  78.40.Fy (Semiconductors)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0400603) and the National Natural Science Foundation of China (Grant No. 61335004).

Corresponding Authors:  Xia Guo, Hua Wu     E-mail:  guox@bupt.edu.cn;wh1125@126.com

Cite this article: 

Xia Guo(郭霞), Qiao-Li Liu(刘巧莉), Hui-Jun Tian(田慧军), Chun-Wei Guo(郭春威), Chong Li(李冲), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Hua Wu(武华) Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires 2018 Chin. Phys. B 27 098502

[1] Huang K H, Yu J G, Kuo C P, Fletcher R M, Osentowski T D, Stinson L J and Liao A S H 1992 Appl. Phys. Lett. 61 1045
[2] Vanderwater D A, Tan I H, Hofler G E, Defevere D C and Kish F A 1997 Proc. IEEE 85 1752
[3] Hsu S C, Wuu D S, Lee C Y, Su J Y and Horng R H 2007 IEEE Photonic Tech. Lett. 19 492
[4] Kim B J, Lee C M, Jung Y H, Baik K H, Mastro M A, Hite J K, Eddy C R and Kim J Y 2011 Appl. Phys. Lett. 99 143101
[5] Seo T H, Lee K J, Oh T S, Lee Y S, Jeong H, Park A H, Kim H, Choi Y R, Suh E K, Cuong T V, Pham V H, Chung J S and Kim E J 2011 Appl. Phys. Lett. 98 251114
[6] Kim J H, Triambulo R E and Park H W 2017 J. Appl. Phys. 121 105304
[7] Lee C J, Jun S, Ju B K and Kim J W 2017 Phys. B:Condens. Matter 514 8
[8] Gebeyehu M B, Chala T F, Chang S Y, Wu C M and Lee J Y 2017 RSC Adv. 7 16139
[9] Guo X, Guo C W, Wang C, Li C and Sun X M 2014 Nanoscale Res. Lett. 9 670
[10] Im H G, Jin J H, Ko J H, Lee J M, Lee J Y and Bae B S 2014 Nanoscale 6 711
[11] Liu X F, Wu B, Zhang Q, Yip J N, Yu G N, Xiong Q H, Mathews N and Sum T C 2014 ACS Nano 8 10101
[12] Li W D, Hu J and Chou S Y 2011 Opt. Express. 19 21098
[13] Liu B, Li C, Liu Q L, Dong J, Guo C W, Wu H, Zhou H Y, Fan X J, Guo X, Wang C, Sun X M, Jin Y H, Li Q Q and Fan S S 2015 Appl. Phys. Lett. 106 033101
[14] William L B, Alain D and Thomas W E 2003 Nature 424 824
[15] Ma Y Q, Shao J H, Zhang Y F, Lu B R, Zhang S C, Sun Y, Qu X P and Chen Y F 2015 Chin. Phys. B 24 080702
[16] Wang L, Wang X D, Mao S C, Wu H, Guo X, Ji Y and Han X D 2016 Nanoscale 8 4030
[17] Guo X and Schubert E F 2001 Appl. Phys. Lett. 78 3337
[18] Chi G C, Su Y K, Jou M J and Hung W C 1994 J. Appl. Phys. 76 2603
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[5] Chiral lateral optical force near plasmonic ring induced by Laguerre-Gaussian beam
Ying-Dong Nie(聂英东), Zhi-Guang Sun(孙智广), and Yu-Rui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(1): 018702.
[6] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[7] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[8] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[11] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[12] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[13] Nano Ag-enhanced photoelectric conversion efficiency in all-inorganic, hole-transporting-layer-free CsPbIBr2 perovskite solar cells
Youming Huang(黄友铭), Yizhi Wu(吴以治), Xiaoliang Xu(许小亮), Feifei Qin(秦飞飞), Shihan Zhang(张诗涵), Jiakai An(安嘉凯), Huijie Wang(王会杰), and Ling Liu(刘玲). Chin. Phys. B, 2022, 31(12): 128802.
[14] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!