Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090501    DOI: 10.1088/1674-1056/27/9/090501
GENERAL Prev   Next  

Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target

Zhan-Peng Xu(许展鹏)1, Xiao-Qian Chen(陈小前)1, Yi-Yong Huang(黄奕勇)1, Yu-Zhu Bai(白玉铸)1, Wen Yao(姚雯)2
1 College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;
2 National Innovation Institute of Defense Technology, Chinese Academy of Military Science, Beijing 100091, China
Abstract  

We investigate the close-range relative motion and control of a spacecraft approaching a tumbling target. Unlike the traditional rigid-body dynamics with translation and rotation about the center of mass (CM), the kinematic coupling between translation and rotation is taken into consideration to directly describe the motion of the spacecraft's sensors or devices which are not coincident with the CM. Thus, a kinematically coupled 6 degrees-of-freedom (DOF) relative motion model for the instrument (feature point) is set up. To make the chaser spacecraft's feature point track the target's, an optimal tracking problem is defined and a control law with a feedback-feedforward structure is designed. With quasi-linearization of the nonlinear dynamical system, the feedforward term is computed from a specified constraint about the dynamical system and the reference model, and the feedback action is derived starting from the state-dependent Ricca equation (SDRE). The proposed controller is compared with an existing suboptimal tracking controller, and numerical simulations are presented to illustrate the effectiveness and superiority of the proposed method.

Keywords:  tumbling target      6 degrees-of-freedom (DOF) relative motion      suboptimal tracking control      state-dependent Ricca equation (SDRE) method  
Received:  15 March 2018      Revised:  13 June 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  07.05.Dz (Control systems)  
  91.10.Sp (Satellite orbits)  
Fund: 

Project supported by the Major Program of the National Natural Science Foundation of China (Grant Nos. 61690210 and 61690213).

Corresponding Authors:  Xiao-Qian Chen     E-mail:  chenxiaoqian@nudt.edu.cn

Cite this article: 

Zhan-Peng Xu(许展鹏), Xiao-Qian Chen(陈小前), Yi-Yong Huang(黄奕勇), Yu-Zhu Bai(白玉铸), Wen Yao(姚雯) Nonlinear suboptimal tracking control of spacecraft approaching a tumbling target 2018 Chin. Phys. B 27 090501

[1] Jiang B Y, Hu Q L and Friswell M I 2016 IEEE Trans. Aerosp. Electron. Syst. 52 1576
[2] Weismuller T and Leinz M 2006 AAS Guidance and Control Conference, p. 11
[3] Spencer D A, Chait S B, Schulte P Z, Okseniuk K J and Veto M 2016 J. Spacecraft & Rockets 53 1
[4] Floresabad A, Wei Z, Ma O and Pham K 2014 J. Guidance Control Dyn. 37 1
[5] Lee D, Bang H, Butcher E A and Sanyal A K 2015 J. Aerosp. Eng. 28 04014099
[6] Sun L and Huo W 2015 IEEE Trans. Aerosp. & Electron. Syst. 51 2433
[7] Liang S and Wei H 2015 Aerosp. Sci. & Technol. 41 28
[8] Filipe N and Tsiotras P 2015 J. Guidance Control & Dyn. 38 566
[9] Lee D, Cochran Jr J E and No T S 2012 J. Aerosp. Eng. 25 436
[10] Xin M and Pan H J 2011 Aerosp. Sci. & Technol. 15 79
[11] Stansbery D T and Cloutier J R 2000 American Control Conference, p. 1867
[12] Ventura J, Ciarcia M, Romano M and Walter U 2016 AIAA Guidance, Navigation, and Control Conference, p. 1
[13] Starek J A, Acikmese B, Nesnas I A and Pavone M 2016 Adv. Control Syst. Technol. For Aerosp. Appl. (Feron E, Ed.) pp. 1-48
[14] Segal S and Gurfil P 2009 J. Guid. Control Dyn. 32 1045
[15] Lee D and Vukovich G 2015 Aerosp. Sci. Technol. 45 316
[16] Cimen T 2012 J. Guidance Control Dyn. 35 1025
[17] Heydari A and Balakrishnan S N 2015 Int. J. Robust & Nonlinear Control 25 2687
[18] York G 2017 Aas/aiaa Space Flight Mechanics Meeting
[19] Ni Q, Huang Y Y and Chen X Q 2017 Chin. Phys. B 26 250
[20] Cloutier J R and Stansbery D T 1999 IEEE International Conference on Control Applications, p. 893
[21] Strano S and Terzo M 2015 Mech. Syst. & Signal Process. 60-61 715
[22] Batmani Y, Davoodi M and Meskin N 2016 American Control Conference, p. 1094
[23] Batmani Y, Davoodi M and Meskin N 2017 IEEE Trans. Control Syst. Technol. 25 1833
[24] Schaub H and Junkins J L 2009 Anal. Mech. Space Syst. (2nd Edn.) (American Institute Aeronautics and Astronautics) p. 793
[25] Berkovitz L D and Medhin N G 2012 Crc Press
[26] Mracek C P and Cloutier J R 1998 Int. J. Robust & Nonlinear Control 8 401
[27] Çimen T 2008 IFAC Proc. Volumes 41 3761
[28] Cimen T 2010 Annu. Rev. Control 34 32
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[3] Realizing reliable XOR logic operation via logical chaotic resonance in a triple-well potential system
Huamei Yang(杨华美) and Yuangen Yao(姚元根). Chin. Phys. B, 2023, 32(2): 020501.
[4] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[7] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Periodic and chaotic oscillations in mutual-coupled mid-infrared quantum cascade lasers
Zhi-Wei Jia(贾志伟), Li Li(李丽), Yi-Yan Guo(郭一岩), An-Bang Wang(王安帮), Hong Han(韩红), Jin-Chuan Zhang(张锦川), Pu Li(李璞), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2022, 31(10): 100505.
[10] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[11] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[12] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[13] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[14] Research and application of stochastic resonance in quad-stable potential system
Li-Fang He(贺利芳), Qiu-Ling Liu(刘秋玲), and Tian-Qi Zhang(张天骐). Chin. Phys. B, 2022, 31(7): 070503.
[15] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
No Suggested Reading articles found!