Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 090502    DOI: 10.1088/1674-1056/27/9/090502
GENERAL Prev   Next  

Conservation laws for Birkhoffian systems of Herglotz type

Yi Zhang(张毅)1, Xue Tian(田雪)2
1 College of Civil Engineering, Suzhou University of Science and Technology, Suzhou 215011, China;
2 College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215009, China
Abstract  

Conservation laws for the Birkhoffian system and the constrained Birkhoffian system of Herglotz type are studied. We propose a new differential variational principle, called the Pfaff-Birkhoff-d'Alembert principle of Herglotz type. Birkhoff's equations for both the Birkhoffian system and the constrained Birkhoffian system of Herglotz type are obtained. According to the relationship between the isochronal variation and the nonisochronal variation, the conditions of the invariance for the Pfaff-Birkhoff-d'Alembert principle of Herglotz type are given. Then, the conserved quantities for the Birkhoffian system and the constrained Birkhoffian system of Herglotz type are deduced. Furthermore, the inverse theorems of the conservation theorems are also established.

Keywords:  Birkhoffian system      conversation law      differential variational principle      variational problem of Herglotz type  
Received:  20 March 2018      Revised:  29 May 2018      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  11.30.-j (Symmetry and conservation laws)  
  45.10.Db (Variational and optimization methods)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11572212 and 11272227), the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province, China (Grant No. KYZZ16_0479), and the Innovation Program for Postgraduate of Suzhou University of Science and Technology, China (Grant No. SKCX16_058).

Corresponding Authors:  Yi Zhang     E-mail:  zhy@mail.usts.edu.cn

Cite this article: 

Yi Zhang(张毅), Xue Tian(田雪) Conservation laws for Birkhoffian systems of Herglotz type 2018 Chin. Phys. B 27 090502

[1] Mei F X 2013 Analytical Mechanics (Ⅱ) (Beijing:Beijing Institute of Technology Press) p. 440 (in Chinese)
[2] Zhang Y and Zhou Y 2013 Nonlinear Dynam. 73 783
[3] Zhou Y and Zhang Y 2014 Chin. Phys. B 23 124502
[4] Jin S X and Zhang Y 2014 Chin. Phys. B 23 054501
[5] Yan B and Zhang Y 2016 Acta Mech. 227 2439
[6] Song J and Zhang Y 2017 Chin. Phys. B 26 084501
[7] Fu J L, Chen L Q and Xie F P 2004 Chin. Phys. B 13 1611
[8] Luo S K, Guo Y X and Mei F X 2004 Acta Phys. Sin. 53 1271 (in Chinese)
[9] Fang J H, Miao Y P, Ding N, et al. 2006 Chin. Phys. B 15 2792
[10] Shi S Y and Huang X H 2008 Chin. Phys. B 17 01554
[11] Fang J H, Wang P and Ding N 2008 Commun. Theor. Phys. 48 977
[12] Fang J H, Liu Y K and Zhang X N 2008 Chin. Phys. B 17 1962
[13] Li Y C, Xia L L, Wang X M, et al. 2010 Acta Phys. Sin. 59 3639 (in Chinses)
[14] Zhao G L, Chen L Q, Fu J L, et al. 2013 Chin. Phys. B 22 030201
[15] Vujanović B 1978 Int. J. Nonlinear Mech. 13 185
[16] Liu D 1989 Acta Mech. Sin. 5 167
[17] Mei F X 1998 J. Beijing Inst. Technol. 18 17 (in Chinese)
[18] Fang J H 2000 Appl. Math. Mech. Engl. 21 836
[19] Vujanović B 1987 Acta Mech. 65 63
[20] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing:Science Press) p. 288 (in Chinese)
[21] Wang C D, Liu S X and Mei F X 2010 Acta. Phys. Sin. 59 8322 (in Chinese)
[22] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing:Beijing Institute of Technology Press) (in Chinese)
[23] Herglotz G 1979 Gesammelte Schriften (Göttingen:Vandenhoeck & Ruprecht)
[24] Mrugała R 1980 Acta Phys. Polon. A 58 19
[25] Furta K, Sano A and Atherton D 1988 State Variable Methods in Automatic Control (New York:John Wiley)
[26] Georgieva B and Guenther R 2002 Topol. Method. Nonlinear Anal. 20 261
[27] Georgieva B, Guenther R and Bodurov T 2003 J. Math. Phys. 44 3911
[28] Georgieva B and Bodurov T 2013 J. Math. Phys. 54 062901
[29] Santos S P S, Martins N and Torres D F M 2015 Discr. Contin. Dyn. Syst. 35 4593
[30] Santos S P S, Martins N and Torres D F M 2018 Discr. Contin. Dyn. Syst. (Ser. S) 11 91
[31] Donchev V 2014 J. Math. Phys. 55 032901
[32] Zhang Y 2016 Chin. J. Theor. Appl. Mech. 48 1382 (in Chinese)
[33] Lazo M J, Paiva J, Amaral J T S, et al. 2017 Phys. Rev. D 95 101501
[34] Lazo M J, Paiva J, Amaral J T S, et al. 2018 J. Math. Phys. 59 032902
[35] Santilli R M 1983 Foundations of Theoretical Mechanics Ⅱ (New York:Springer)
[36] Mei F X, Wu H B, Li Y M, et al. 2016 Chin. J. Theor. Appl. Mech. 48 263 (in Chinese)
[37] Galiullan A S 1989 Analytical Dynamics (Moscow:Nauka) (in Russian)
[38] Mei F X, Shi R C, Zhang Y F and Wu H B 1996 Dynamics of Birkhoffian System (Beijing:Beijing Institute of Technology Press) (in Chinese)
[39] Galiullin A S, Gafarov G G, Malaishka R P and Khwan A M 1997 Analytical Dynamics of Helmholtz, Birkhoff and Nambu Systems (Moscow:UFN) (in Russian)
[40] Mei F X 2013 Dynamics of Generalized Birkhoffian System (Beijing:Science Press) (in Chinese)
[41] Zhang Y 2017 Acta Mech. 228 1481
[42] Tian X and Zhang Y 2018 Int. J. Theor. Phys. 57 887
[1] Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type
Juan-Juan Ding(丁娟娟), Yi Zhang(张毅). Chin. Phys. B, 2020, 29(4): 044501.
[2] A new type of adiabatic invariants for disturbednon-conservative nonholonomic system
Xin-Xin Xu(徐鑫鑫), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(12): 120402.
[3] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[4] Bifurcation for the generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(5): 054501.
[5] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[6] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[7] Perturbation to Mei symmetry and Mei adiabatic invariants for discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2011, 20(5): 054501.
[8] Type of integral and reduction for a generalized Birkhoffian system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2011, 20(10): 104501.
[9] Poisson theory and integration method of Birkhoffian systems in the event space
Zhang Yi(张毅). Chin. Phys. B, 2010, 19(8): 080301.
[10] Form invariance and new conserved quantity of generalised Birkhoffian system
Mei Feng-Xiang(梅凤翔) and Wu Hui-Bin(吴惠彬). Chin. Phys. B, 2010, 19(5): 050301.
[11] Symmetry and conserved quantities of discrete generalized Birkhoffian system
Zhang Ke-Jun(张克军), Fang Jian-Hui(方建会), and Li Yan(李燕). Chin. Phys. B, 2010, 19(12): 124601.
[12] Perturbation to Lie symmetry and another type of Hojman adiabatic invariants for Birkhoffian systems
Ding Ning(丁宁), Fang Jian-Hui(方建会), and Chen Xiang-Xia(陈相霞) . Chin. Phys. B, 2008, 17(6): 1967-1971.
[13] A potential integration method for Birkhoffian system
Hu Chu-Le(胡楚勒) and Xie Jia-Fang(解加芳). Chin. Phys. B, 2008, 17(4): 1153-1155.
[14] Routh method of reduction for Birkhoffian systems in the event space
Zhang Yi (张毅). Chin. Phys. B, 2008, 17(12): 4365-4368.
[15] A Birkhoff-Noether method of solving differential equations
Shang Mei(尚玫), Guo Yong-Xin(郭永新), and Mei Feng-Xiang (梅凤翔). Chin. Phys. B, 2007, 16(2): 292-295.
No Suggested Reading articles found!