Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083103    DOI: 10.1088/1674-1056/27/8/083103

A simulation study of water property changes using geometrical alteration in SPC/E

Ming-Ru Li(李明儒)1,2, Nan Zhang(张楠)1,2, Feng-Shou Zhang(张丰收)1,2,3
1 Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education of China and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China;
2 Beijing Radiation Center, Beijing 100875, China;
3 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou 730000, China
Abstract  We present a systematic investigation of the impact of changing the geometry structure of the SPC/E water model by performing a series of molecular dynamic simulations at 1 bar (1 bar=105 Pa) and 298.15 K. The geometric modification includes altering the H-O-H angle range from 90° to 115° and modifying the O-H length range from 0.90 Å to 1.10 Å in the SPC/E model. The former is achieved by keeping the dipole moment constant by modifying the O-H length, while in the latter only the O-H length is changed. With the larger bond length and angle, we find that the liquid shows a strong quadrupole interaction and high tetrahedral structure order parameter, resulting in the enhancement of the network structure of the liquid. When the bond length or angle is reduced, the hydrogen bond lifetime and self-diffusion constant decrease due to the weakening of the intermolecular interaction. We find that modifying the water molecular bond length leading to the variation of the intermolecular interaction strength is more intensive than changing the bond angle. Through calculating the average reduced density gradient and thermal fluctuation index, it is found that the scope of vdW interaction with neighbouring water molecules is inversely proportional to the change of the bond length and angle. The effect is mainly due to a significant change of the hydrogen bond network. To study the effect of water models as a solvent whose geometry has been modified, the solutions of ions in different solvent environments are examined by introducing NaCl. During the dissolving process, NaCl ions are ideally dissolved in SPC/E water and bond with natural water more easily than with other solvent models.
Keywords:  molecular dynamics simulation      geometric modification      intermolecular interaction      ion's solvation  
Received:  03 April 2018      Revised:  15 May 2018      Accepted manuscript online: 
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  31.70.-f (Effects of atomic and molecular interactions on electronic structure)  
  61.25.Em (Molecular liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11025524, and 11161130520), the National Basic Research Program of China (Grant No. 2010CB832903), and the European Commission's 7th Framework Programme (Fp7-PEOPLE-2010-IRSES) (Grant Agreement Project No. 269131).
Corresponding Authors:  Feng-Shou Zhang     E-mail:

Cite this article: 

Ming-Ru Li(李明儒), Nan Zhang(张楠), Feng-Shou Zhang(张丰收) A simulation study of water property changes using geometrical alteration in SPC/E 2018 Chin. Phys. B 27 083103

[1] Davis J G, Gierszal K P, Wang P and Ben-Amotz D 2012 Nature 491 582
[2] Stiopkin I V, Weeraman C, Pieniazek P A, Shalhout F Y, Skinner J L and Benderskii A V 2011 Nature 474 192
[3] Ji M, Odelius M and Gaffney K J 2010 Science 328 1003
[4] Chen B, Ivanov I, Klein M L and Parrinello M 2003 Phys. Rev. Lett. 91 215503
[5] Vega C, Sanz E and Abascal J L F 2005 J. Chem. Phys. 122 114507
[6] Harrington S, Poole P H, Sciortino F and Stanley H E 1997 J. Chem. Phys. 107 7443
[7] Horne R A and Johnson D S 1966 J. Phys. Chem. 70 2182
[8] Tan M L, Fischer J T, Chandra A, Brooks B R and Ichiye T 2003 Chem. Phys. Lett. 376 646
[9] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 Phys. Rev. Lett. 100 088104
[10] Shen X, Gu B, Che S A and Zhang F S 2011 J. Chem. Phys. 135 034509
[11] Shen H, Cheng W and Zhang F S 2015 RSC Adv. 5 9627
[12] Huang J, Lopes P E M, Roux B and MacKerell A D 2014 J. Phys. Chem. Lett. 5 3144
[13] Vedamuthu M, Singh S and Robinson G W 1994 J. Phys. Chem. 98 2222
[14] Yan Z, Buldyrev S V and Stanley H E 2008 Phys. Rev. E 78 051201
[15] Nilsson A and Pettersson L G M 2015 Nat. Commun. 6 8998
[16] Lynden-Bell R M, Giovambattista N, Debenedetti P G, Head-Gordon T and Rossky P 2011 Phys. Chem. Chem. Phys. 13 2748
[17] Bergman D L and Lynden-Bell R M 2001 Mol. Phys. 99 1011
[18] Lynden-Bell R M and Head-Gordon T 2006 Mol. Phys. 104 3593
[19] Lynden-Bell R M and Youngs T G A 2006 Mol. Simul. 32 1025
[20] Lynden-Bell R M and Debenedetti P G 2005 J. Phys. Chem. B 109 6527
[21] Zhang F S and Lynden-Bell R M 2005 Phys. Rev. E 71 021502
[22] Chatterjee S, Debenedetti P G, Stillinger F H and Lynden-Bell R M 2008 J. Chem. Phys. 128 124511
[23] Gu B, Zhang F S, Wang Z P and Zhou H Y 2008 J. Chem. Phys. 129 184505
[24] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[25] Weerasinghe S and Smith P E 2003 J. Chem. Phys. 119 11342
[26] Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101
[27] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A D and Haak J R 1984 J. Chem. Phys. 81 3684
[28] Ryckaert J P, Ciccotti G and Berendsen H J C 1977 J. Comput. Phys. 23 327
[29] Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
[30] Petersen H G 1995 J. Chem. Phys. 103 3668
[31] Hess B, Kutzner C, van der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435
[32] Lu T and Chen F 2012 J. Comput. Chem. 33 580
[33] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graphics 14 33
[34] Kumar R, Schmidt J R and Skinner J L 2007 J. Chem. Phys. 126 204107
[35] Kalinichev A G and J D Bass 1994 Chem. Phys. Lett. 231 301
[36] Svishchev I M and Kusalik P G 1993 J. Chem. Phys. 99 3049
[37] Errington J R and Debenedetti P G 2001 J. Chem. Phys. 409 318
[38] Torquato S, Truskett T M and Debenedetti P G 2000 Phys. Rev. Lett. 84 2064
[39] Sharma R, Chakraborty S N and Chakravarty C 2006 J. Chem. Phys. 125 204501
[40] Truskett T M, Torquato S and Debenedetti P G 2000 Phys. Rev. E 62 993
[41] Abascal J L F and C Vega 2007 J. Phys. Chem. 111 15811
[42] Abascal J L F and Vega C 2007 Phys. Chem. Chem. Phys. 9 2775
[43] Jabes B S, Nayar D, Dhabal D, Molinero V and Chakravarty C 2012 J. Phys: Condens. Matter 24 284116
[44] Johnson E R, Keinan S, Snchez P M, Garca J C, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498
[45] Contreras-Garcia J, Johnson E R, Keinan S, Chaudret R, Piquemal J. P, Beratan D N and Yang W 2011 J. Chem. Theory Comput. 7 625
[46] Garcia J C, Calatayud M, Piquemal J P and Recio J M 2012 Comput. Theor. Chem. 998 193
[47] Roza A O, Johnson E R and Garcia J C 2012 Phys. Chem. Chem. Phys. 14 12165
[48] Bartha F, Kapuy O, Kozmutza C and Van Alsenoy C 2003 J. Mol. Struct. (Theochem) 666 117
[49] Lyubartsev A P and Laaksonen A 1996 J. Phys. Chem. 100 16410
[50] Gu B, Zhang F S, Huang Y G and Fang X 2010 Chin. Phys. B 19 036101
[51] Kropman M F and Bakker H J 2001 Science 291 2118
[52] Hribar B, Southall N T, Vlachy V and Dill K A 2002 J. Am. Chem. Soc. 41 12302
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[7] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[8] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[15] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
No Suggested Reading articles found!