Special Issue:
TOPICAL REVIEW — SECUF: Breakthroughs and opportunities for the research of physical science
|
TOPICAL REVIEW—SECUF: Breakthroughs and opportunities for the research of physical science |
Prev
Next
|
|
|
Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets |
Zheng Li(李政)1,2, Guo-qing Zheng(郑国庆)1,2 |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract Nuclear magnetic resonance (NMR) is one of the most powerful tools to explore new quantum states of condensed matter induced by high magnetic fields at a microscopic level. High magnetic field enhances the intensity of the NMR signal, and more importantly, can induce novel phenomena. In this article, examples are given on the field-induced charge density wave (CDW) in high-Tc superconductors and on the studies of quantum spin liquids. We provide a brief introduction to the high magnetic field NMR platform, the station 4 of the Synergetic Extreme Condition User Facility (SECUF), being built at Huairou, Beijing.
|
Received: 25 April 2018
Revised: 19 May 2018
Accepted manuscript online:
|
PACS:
|
74.25.nj
|
(Nuclear magnetic resonance)
|
|
76.60.-k
|
(Nuclear magnetic resonance and relaxation)
|
|
71.45.Lr
|
(Charge-density-wave systems)
|
|
74.25.Dw
|
(Superconductivity phase diagrams)
|
|
Fund: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB07020200), the National Key Research and Development Program of China (Grant Nos. 2016YFA0300502 and 2015CB921304), and the National Natural Science Foundation of China (Grant No. 11634015). |
Corresponding Authors:
Zheng Li, Guo-qing Zheng
E-mail: lizheng@iphy.ac.cn;gqzheng@iphy.ac.cn
|
Cite this article:
Zheng Li(李政), Guo-qing Zheng(郑国庆) Nuclear magnetic resonance measurement station in SECUF using hybrid superconducting magnets 2018 Chin. Phys. B 27 077404
|
[1] |
Bhattacharya A 2010 Nature 463 605
|
[2] |
https://nationalmaglab.org/news-events/news/new-world-record-magnet-fulfills-superconducting-promise
|
[3] |
Zheng G Q, Kuhns P L, Reyes A P, Liang B and Lin C T 2005 Phys. Rev. Lett. 94 047006
|
[4] |
Kawasaki S, Lin C T, Kuhns P L, Reyes A P and Zheng G Q 2010 Phys. Rev. Lett. 105 137002
|
[5] |
Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C, Hardy W N, Liang R X, Bonn D A and Julien M H 2015 Nat. Commun. 6 6438
|
[6] |
Kawasaki S, Li Z, Kitahashi M, Lin C T, Kuhns P L, Reyes A P and Zheng G Q 2017 Nat. Commun. 8 1267
|
[7] |
Feng Z, Li Z, Meng X, Yi W, Wei Y, Zhang J, Wang Y-C, Jiang W, Liu Z, Li S, Liu F, Luo J, Li S, Zheng G Q, Meng Z Y, Mei J W and Shi Y 2017 Chin. Phys. Lett. 34 077502
|
[8] |
Zheng J, Ran K, Li T, Wang J, Wang P, Liu B, Liu Z X, Normand B, Wen J and Yu W 2017 Phys. Rev. Lett. 119 227208
|
[9] |
Bednorz J G and Müller K A 1986 Zeitschrift für Physik B Condensed Matter 64 189
|
[10] |
Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
|
[11] |
Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
|
[12] |
Fradkin E, Kivelson S A and Tranquada J M 2015 Rev. Mod. Phys. 87 457
|
[13] |
Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
|
[14] |
Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C, Hardy W N, Liang R X, Bonn D A and Julien M H 2011 Nature 477 191
|
[15] |
Gerber S, Jang H, Nojiri H, Matsuzawa S, Yasumura H, Bonn D A, Liang R, Hardy W N, Islam Z, Mehta A, Song S, Sikorski M, Stefanescu D, Feng Y, Kivelson S A, Devereaux T P, Shen Z X, Kao C C, Lee W S, Zhu D and Lee J S 2015 Science 350 949
|
[16] |
Chang J, Blackburn E, Ivashko O, Holmes A T, Christensen N B, Hucker M, Liang R, Bonn D A, Hardy W N, Rutt U, Zimmermann M, Forgan E M and Hayden S M 2016 Nat. Commun. 7 11494
|
[17] |
Doiron-Leyraud N, Proust C, LeBoeuf D, Levallois J, Bonnemaison J B, Liang R X, Bonn D A, Hardy W N and Taillefer L 2007 Nature 447 565
|
[18] |
Hoffman J E, Hudson E W, Lang K M, Madhavan V, Eisaki H, Uchida S and Davis J C 2002 Science 295 466
|
[19] |
Chang J, Doiron-Leyraud N, Cyr-Choiniere O, Grissonnanche G, Laliberte F, Hassinger E, Reid J P, Daou R, Pyon S, Takayama T, Takagi H and Taillefer L 2012 Nat. Phys. 8 751
|
[20] |
Neto E H D, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J S, Schneeloch J, Xu Z J, Ono S, Gu G D, Le Tacon M and Yazdani A 2014 Science 343 393
|
[21] |
Wu T, Mayaffre H, Kramer S, Horvatic M, Berthier C, Kuhns P L, Reyes A P, Liang R X, Hardy W N, Bonn D A and Julien M H 2013 Nat. Commun. 4 2113
|
[22] |
Comin R, Frano A, Yee M M, Yoshida Y, Eisaki H, Schierle E, Weschke E, Sutarto R, He F, Soumyanarayanan A, He Y, Le Tacon M, Elfimov I S, Hoffman J E, Sawatzky G A, Keimer B and Damascelli A 2014 Science 343 390
|
[23] |
Peng Y Y, Salluzzo M, Sun X, Ponti A, Betto D, Ferretti A M, Fumagalli F, Kummer K, Le Tacon M, Zhou X J, Brookes N B, Braicovich L and Ghiringhelli G 2016 Phys. Rev. B 94 184511
|
[24] |
Anderson P W 1987 Science 235 1196
|
[25] |
Kitaev A Y 2003 Ann. Phys. 303 2
|
[26] |
http://english.hmfl.cas.cn/news/news_archive/2017/201709/t20170929_183607.html
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|