|
Abstract Exploring, manipulating, and understanding new exotic quantum phenomena in condensed-matter systems have generated great interest in the scientific community. Static and time resolved optical spectroscopies after photoexcitations are important experimental tools for probing charge dynamics and quasiparticle excitations in quantum materials. In Synergetic Extreme Condition User Facility (SECUF), we shall construct magneto-infrared and terahertz measurement systems and develop a number of ultrafast femtosecond laser based systems, including intense near to mid-infrared pump terahertz probe. In this article, we shall describe several systems to be constructed and developed in the facilities, then present some examples explaining the application of magneto optics and time resolved spectroscopy techniques.
|
Received: 27 April 2018
Revised: 20 May 2018
Accepted manuscript online:
|
PACS:
|
75.78.Jp
|
(Ultrafast magnetization dynamics and switching)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
75.80.+q
|
(Magnetomechanical effects, magnetostriction)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11327806, 11404385, and GZ1123) and the National Key Research and Development Program of China (Grant Nos. 2016YFA0300902 and 2017YFA0302904). |
Corresponding Authors:
N L Wang
E-mail: nlwang@pku.edu.cn
|
Cite this article:
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林) Magneto optics and time resolved terahertz spectrocopy 2018 Chin. Phys. B 27 077501
|
[1] |
Basov D N, Averitt R D, van der Marel D, Dressel M and Haule K 2011 Rev. Mod. Phys. 83 471
|
[2] |
Kübler C, Huber R, Tübel S and Leitenstorfer A 2004 Appl. Phys. Lett. 85 3360
|
[3] |
Sell A, Leitenstorfer A and Huber R 2008 Opt. Lett. 33 2767
|
[4] |
Hebling J, Almási G, Kozma I Z and Kuhl J 2002 Opt. Express 10 1161
|
[5] |
Hirori H, Doi A, Blanchard F and Tanaka K 2011 Appl. Phys. Lett. 98 091106
|
[6] |
Zhang S J, Wang Z X, Dong T and Wang N L 2017 Front. Phys. 12 127802
|
[7] |
Liu B, Bromberger H, Cartella A, Gebert T, Först M and Cavalleri A 2017 Opt. Lett. 42 129
|
[8] |
Ikebe Y, Morimoto T, Masutomi R, Okamoto T, Aoki H and Shimano R 2010 Phys. Rev. Lett. 104 256802
|
[9] |
Gusynin V P and Sharapov S G 2006 Phys. Rev. B 73 245411
|
[10] |
Sadowski M L, Martinez G, Potemski M, Berger C and de Heer W A 2006 Phys. Rev. Lett. 97 266405
|
[11] |
Jiang Z, Henriksen E A, Tung L C, Wang Y J, Schwartz M E, Han M Y, Kim P and Stormer H L 2007 Phys. Rev. Lett. 98 197403
|
[12] |
Chen R Y, Chen Z G, Song X Y, Schneeloch J A, Gu G D, Wang F and Wang N L 2015 Phys. Rev. Lett. 115 176404
|
[13] |
Chen Z G, Wang L, Song Y, Lu X, Luo H, Zhang C, Dai P, Yin Z, Haule K and Kotliar G 2017 Phys. Rev. Lett. 119 096401
|
[14] |
Maciejko J, Qi X L, Drew H D and Zhang S C 2010 Phys. Rev. Lett. 105 166803
|
[15] |
Morimoto T, Hatsugai Y and Aoki H 2009 Phys. Rev. Lett. 103 116803
|
[16] |
Shuvaev A M, Astakhov G V, Pimenov A, Brüne C, Buhmann H and Molenkamp L W 2011 Phys. Rev. Lett. 106 107404
|
[17] |
Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Bottcher J, Tkachov G, Hankiewicz E M, Brune C, Buhmann H and Molenkamp L W 2017 Nat Commun. 8 15197
|
[18] |
Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T and Aoki H 2013 Nat Commun. 4 1841
|
[19] |
Wu L, Salehi M, Koirala N, Moon J, Oh S and Armitage N P 2016 Science 354 1124
|
[20] |
Yamaguchi K, Kurihara T, Minami Y, Nakajima M and Suemoto T 2013 Phys. Rev. Lett. 110 137204
|
[21] |
Pimenov A, Mukhin A A, Ivanov V Y, Travkin V D, Balbashov A M and Loidl A 2006 Nat. Phys. 2 97
|
[22] |
Sushkov A B, Aguilar R V, Park S, Cheong S W and Drew H D 2007 Phys. Rev. Lett. 98 027202
|
[23] |
Cazayous M, Gallais Y, Sacuto A, de Sousa R, Lebeugle D and Colson D 2008 Phys. Rev. Lett. 101 037601
|
[24] |
Kèzsmárki I, Kida N, Murakawa H, Bordács S, Onose Y and Tokura Y 2011 Phys. Rev. Lett. 106 057403
|
[25] |
Wang Z, Wu J, Xu S, Yang W, Wu C, Bera A K, Islam A T M N, Lake B, Kamenskyi D, Gogoi P, Engelkamp H, Wang N, Deisenhofer J and Loidl A 2016 Phys. Rev. B 94 125130
|
[26] |
Wang Z, Wu J, Yang W, Bera A K, Kamenskyi D, Islam A, Xu S, Law J M, Lake B, Wu C and Loidl A 2018 Nature 554 219
|
[27] |
Fausti D, Tobey R I, Dean N, Kaiser S, Dienst A, Hoffmann M C, Pyon S, Takayama T, Takagi H and Cavalleri A 2011 Science 331 189
|
[28] |
Kaiser S, Hunt C R, Nicoletti D, Hu W, Gierz I, Liu H Y, Le Tacon M, Loew T, Haug D, Keimer B and Cavalleri A 2014 Phys. Rev. B 89 184516
|
[29] |
Hu W, Kaiser S, Nicoletti D, Hunt C R, Gierz I, Hoffmann M C, Le Tacon M, Loew T, Keimer B and Cavalleri A 2014 Nat. Mater. 13 705
|
[30] |
Zhang S J, Wang Z X, Shi L Y, Lin T, Zhang M Y, Gu G D, Dong T and Wang N L 2017 arXiv:1712.01174
|
[31] |
Matsunaga R, Hamada Y I, Makise K, Uzawa Y, Terai H, Wang Z and Shimano R 2013 Phys. Rev. Lett. 111 057002
|
[32] |
Kirilyuk A, Kimel A V and Rasing T 2010 Rev. Mod. Phys. 82 2731
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|