Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040202    DOI: 10.1088/1674-1056/27/4/040202
GENERAL Prev   Next  

Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation

Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香)
School of Mathematical Sciences, Liaocheng University, Liaocheng 252059, China
Abstract  This paper is concerned with the generalized variable-coefficient nonlinear evolution equation (vc-NLEE). The complete integrability classification is presented, and the integrable conditions for the generalized variable-coefficient equations are obtained by the Painlevé analysis. Then, the exact explicit solutions to these vc-NLEEs are investigated by the truncated expansion method, and the Lax pairs (LP) of the vc-NLEEs are constructed in terms of the integrable conditions.
Keywords:  Painlevé test      integrability classification      Lax pair      truncated expansion      exact solution  
Received:  01 December 2017      Revised:  01 January 2018      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11171041) and the High-Level Personnel Foundation of Liaocheng University (Grant No. 31805).
Corresponding Authors:  Han-Ze Liu     E-mail:  bzliuhanze@163.com

Cite this article: 

Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香) Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation 2018 Chin. Phys. B 27 040202

[1] Conte R and Musette M 2008 The Painlevé handbook (Dordrecht:Springer)
[2] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[3] Weiss J 1983 J. Math. Phys. 24 1405
[4] Ablowitz M and Segur H 1981 Solition and the inverse scattering transform (Philadelphia:SIAM)
[5] Wang D S and Lou S Y 2009 J. Math. Phys. 50 123513
[6] Matveev V and Salle M 1991 Darboux transformations and solitions (Berlin:Springer)
[7] Rogers C and Shadwick W 1982 Bäcklund transformations and their applications (New York:Academic Press)
[8] Liu H Z, Xin X P, Wang Z G and Liu X Q 2017 Commun. Nonlinear Sci. Numer. Simulat. 44 11
[9] Bluman G and Anco S 2002 Symmetry and integration methods for differential equations (New York:Springer-Verlag)
[10] Olver P 1993 Applications of Lie groups to differential equations (New York:Springer-Verlag)
[11] Liu H Z and Xin X P 2016 Commun. Theor. Phys. 66 155
[12] Liu H Z and Yue C 2017 Nonlinear Dyn. 89 1989
[13] Ma W X, Bullough R K and Caudrey P J 1997 J. Nonlinear Math. Phys. 4 293
[14] Kou K and Li J B 2017 Int. J. Bifur. Chaos 27 1750058
[15] Feng D H and Li J B 2007 Phys. Lett. A 369 255
[16] Wang M L, Li X and Zhang J 2008 Phys. Lett. A 372 417
[17] Zhang Y, Li J B and Lv Y N 2008 Ann. Phys. 323 3059
[18] Wei G M, Gao Y T, Hu W and Zhang C Y 2006 Eur. Phys. J. B 53 343
[19] Ma W X 1994 J. Fudan Univ. 33 319
[20] Vaneeva O 2012 Commun. Nonlinear Sci. Numer. Simulat. 17 611
[21] Zhang Y P, Liu J and Wei G M 2015 Appl. Math. Lett. 45 58
[22] Newell A 1985 Solitions in mathematics and physics (Philadelphia:SIAM)
[23] Ma Z Y, Fei J X and Chen Y M 2014 Appl. Math. Lett. 37 54
[24] Xia Y R, Xin X P and Zhang S L 2017 Chin. Phys. B 26 030202
[1] Darboux transformation and soliton solutions of a nonlocal Hirota equation
Yarong Xia(夏亚荣), Ruoxia Yao(姚若侠), and Xiangpeng Xin(辛祥鹏). Chin. Phys. B, 2022, 31(2): 020401.
[2] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[3] Deformed two-dimensional rogue waves in the (2+1)-dimensional Korteweg-de Vries equation
Yulei Cao(曹玉雷), Peng-Yan Hu(胡鹏彦), Yi Cheng(程艺), and Jingsong He(贺劲松). Chin. Phys. B, 2021, 30(3): 030503.
[4] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[5] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[6] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[7] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[8] Lax pair and vector semi-rational nonautonomous rogue waves for a coupled time-dependent coefficient fourth-order nonlinear Schrödinger system in an inhomogeneous optical fiber
Zhong Du(杜仲), Bo Tian(田播), Qi-Xing Qu(屈启兴), Xue-Hui Zhao(赵学慧). Chin. Phys. B, 2020, 29(3): 030202.
[9] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[10] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[11] A note on “Lattice soliton equation hierarchy and associated properties”
Xi-Xiang Xu(徐西祥), Min Guo(郭敏). Chin. Phys. B, 2019, 28(1): 010202.
[12] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[13] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[14] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[15] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
No Suggested Reading articles found!