Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020302    DOI: 10.1088/1674-1056/27/2/020302
GENERAL Prev   Next  

Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states

Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎)
School of Information Science and Engineering, Central South University, Changsha 410083, China
Abstract  

We propose an arbitrated quantum signature (AQS) scheme with continuous variable (CV) squeezed vacuum states, which requires three parties, i.e., the signer Alice, the verifier Bob and the arbitrator Charlie trusted by Alice and Bob, and three phases consisting of the initial phase, the signature phase and the verification phase. We evaluate and compare the original state and the teleported state by using the fidelity and the beam splitter (BS) strategy. The security is ensured by the CV-based quantum key distribution (CV-QKD) and quantum teleportation of squeezed states. Security analyses show that the generated signature can be neither disavowed by the signer and the receiver nor counterfeited by anyone with the shared keys. Furthermore, the scheme can also detect other manners of potential attack although they may be successful. Also, the integrality and authenticity of the transmitted messages can be guaranteed. Compared to the signature scheme of CV-based coherent states, our scheme has better encoding efficiency and performance. It is a potential high-speed quantum signature scheme with high repetition rate and detection efficiency which can be achieved by using the standard off-the-shelf components when compared to the discrete-variable (DV) quantum signature scheme.

Keywords:  arbitrated quantum signature      squeezed vacuum state      continuous variable      quantum teleportation  
Received:  19 October 2017      Revised:  17 November 2017      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61379153 and 61572529).

Corresponding Authors:  Ying Guo     E-mail:  guoyingcsu@sina.com
About author:  03.67.-a; 03.67.Ac; 03.67.Dd; 03.67.Hk

Cite this article: 

Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎) Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states 2018 Chin. Phys. B 27 020302

[1] Nielsen M A and Chuang I L 2000 Quantum information (Cambridge:Cambridge University Press)
[2] Wang B, Wu X and Meng F 2017 J. Comput. Appl. Math. 313 185
[3] Amiri R and Arrazola J M 2017 Phys. Rev. A 95 062334
[4] Gao F, Liu B, Huang W and Wen Q Y 2015 IEEE. J. Sel. Top. Quant. 21 98
[5] Wei C Y, Wang T Y and Gao F 2016 Phys. Rev. A 93 042318
[6] Wei C Y, Cai X Q, Liu B, Wang T and Gao F 2017 IEEE T. Comput. DOI:10.1109/TC.2017.2721404
[7] Shi R H, Mu Y, Zhong H and Zhang S 2015 Phys. Rev. A 92 022309
[8] Shi R H, Mu Y, Zhong H, Zhang S and Cui J 2016 Inform. Sci. 370-371 147
[9] Zeng G and Keitel C H 2002 Phys. Rev. A 65 042312
[10] Lee H, Hong C, Kim H, Lim J and Yang H J 2004 Phys. Lett. A 321 295
[11] Curty M and Lütkenhaus N 2008 Phys. Rev. A 77 046301
[12] Zeng G 2008 Phys. Rev. A 78 016301
[13] Li Q, Chan W H and Long D Y 2009 Phys. Rev. A 79 054307
[14] Zou X and Qiu D 2010 Phys. Rev. A 82 042325
[15] Choi J W, Chang K Y and Hong D 2011 Phys. Rev. A 84 062330
[16] Li F G and Shi J H 2015 Quantum Inf. Process. 14 2171
[17] Yang Y G, Lei H, Liu Z C, Zhou Y H and Shi W M 2016 Quantum Inf. Process. 15 2487
[18] Guo Y, Feng Y, Huang D and Shi J 2016 Int. J. Theor. Phys. 55 2290
[19] Shang T, Zhao X, Wang C and Liu J 2015 Quantum Inf. Process. 14 393
[20] Wang B, Yang H and Meng F 2017 Calcolo 54 117
[21] Su Qi, Huang Z, Wen Q and L W 2010 Opt. Commun. 283 4408
[22] Wang T Y and Wen Q Y 2010 Chin. Phys. B 19 060307
[23] Shi J J, Shi R H, Guo Y and Peng X Q 2013 Sci. China-Inform. Sci. 56 1
[24] Fan L, Zhang H J, Qin S L and Guo F Z 2016 Int. J. Theor. Phys. 55 1028
[25] Yang Y G and Wen Q Y 2008 Sci. China Ser. G:Phys., Mech. Astron. 51 1505
[26] Wen X, Tian Y, Ji L and Niu X 2010 Phys. Scr. 81 055001
[27] Shi J, Shi R, Tang Y and Lee M H 2011 Quantum Inf. Process. 10 653
[28] Xu G B and Zhang K J 2015 Quantum Inf. Process. 14 2577
[29] Wang T Y and Wei Z L 2012 Quantum Inf. Process. 11 455
[30] Gottesman D and Chuang I 2001 arXiv preprint quant-ph0105032
[31] Collins R J, Donaldson R J, Dunjko V, Wallden P, Clarke P J, Andersson E, Jeffers J and Buller G S 2014 Phys. Rev. Lett. 112 040502
[32] Yin H L, Fu Y and Chen Z B 2016 Phys. Rev. A 93 032316
[33] Li W, Shi R, Huang D, Shi J and Guo Y 2016 Phys. Scr. 91 035101
[34] Liu J L, Shi R H, Shi J J, Lv G L and Guo Y 2016 Chin. Phys. B 25 080306
[35] Braunstein S L and Van Loock P 2005 Rev. Mod. Phys. 77 513
[36] Wang X B 2005 Phys. Rev. Lett. 94 230503
[37] Scarani V, Acin A, Ribordy G and Gisin N 2004 Phys. Rev. Lett. 92 057901
[38] Takei N, Aoki T, Koike S, Yoshino K, Wakui K, Yonezawa H, Hiraoka T, Mizuno J, Takeoka M, Ban M and Furusawa A 2005 Phys. Rev. A 72 042304
[39] Zeng G, Lee M, Guo Y and He G 2007 Int. J. Quantum Inf. 5 553
[40] Ma H, Huang P, Bao W and Zeng G 2016 Quantum Inf. Process. 15 2605
[41] Jouguet P, Kunz-Jacques S and Leverrier A 2011 Phys. Rev. A 84 062317
[42] Cerf N J, Levy M and Van Assche G 2001 Phys. Rev. A 63 052311
[43] Guo Y, Liao Q, Wang Y, Huang D, Huang Peng and Zeng G 2017 Phys. Rev. A 95 032304
[44] Guo Y, Xie C, Liao Q, Zhao W, Zeng G and Huang D 2017 Phys. Rev. A 96 022320
[45] Huang D, Huang P, Lin D and Zeng G 2016 Sci. Rep. 6 19201
[46] Li Y M, Wang X Y, Bai Z L, Liu W Y, Yang S S and Peng K C 2017 Chin. Phys. B 26 040303
[47] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[48] Walls D F and Milburn G J 2007 Quantum Optics (Springer Science, Business Media)
[49] Jeong H, Ralph T C and Bowen W P 2007 J. Opt. Soc. Am. B 24 355
[50] Furusawa A, Sfrensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[51] Twamley J 1996 J. Phys. A:Math. Gen. 29 3723
[52] Andersson E, Curty M and Jex I 2006 Phys. Rev. A 74 022304
[53] Gao F, Qin S J, Guo F Z and Wen Q Y 2011 Phys. Rev. A 84 022344
[54] Kogias I, Ragy S and Adesso G 2014 Phys. Rev. A 89 052324
[1] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[2] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[3] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[4] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[5] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[6] Continuous-variable quantum key distribution based on photon addition operation
Xiao-Ting Chen(陈小婷), Lu-Ping Zhang(张露萍), Shou-Kang Chang(常守康), Huan Zhang(张欢), and Li-Yun Hu(胡利云). Chin. Phys. B, 2021, 30(6): 060304.
[7] Quantum computation and error correction based on continuous variable cluster states
Shuhong Hao(郝树宏), Xiaowei Deng(邓晓玮), Yang Liu(刘阳), Xiaolong Su(苏晓龙), Changde Xie(谢常德), and Kunchi Peng(彭堃墀). Chin. Phys. B, 2021, 30(6): 060312.
[8] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[9] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[10] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
[11] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[12] Anonymous voting for multi-dimensional CV quantum system
Rong-Hua Shi(施荣华), Yi Xiao(肖伊), Jin-Jing Shi(石金晶), Ying Guo(郭迎), Moon-Ho Lee. Chin. Phys. B, 2016, 25(6): 060301.
[13] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[14] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing (赵明镜), Chen Bin (陈斌), Fei Shao-Ming (费少明). Chin. Phys. B, 2015, 24(7): 070302.
[15] Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity
Jino Heo, Chang-Ho Hong, Jong-In Lim, Hyung-Jin Yang. Chin. Phys. B, 2015, 24(5): 050304.
No Suggested Reading articles found!