|
|
Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields |
M Eshghi1, R Sever2, S M Ikhdair3,4 |
1. Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
2. Department of Physics, Middle East Technical University, Ankara, Turkey;
3. Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine;
4. Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey |
|
|
Abstract We need to solve a suitable exponential form of the position-dependent mass (PDM) Schrödinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.
|
Received: 17 July 2017
Revised: 23 October 2017
Accepted manuscript online:
|
PACS:
|
03.65.Ge
|
(Solutions of wave equations: bound states)
|
|
03.65.Db
|
(Functional analytical methods)
|
|
03.65.Ca
|
(Formalism)
|
|
03.65.Fd
|
(Algebraic methods)
|
|
Corresponding Authors:
M Eshghi
E-mail: eshgi54@gmail.com,m.eshghi@semnan.ac.ir
|
About author: 03.65.Ge; 03.65.Db; 03.65.Ca; 03.65.Fd |
Cite this article:
M Eshghi, R Sever, S M Ikhdair Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields 2018 Chin. Phys. B 27 020301
|
[1] |
Flugge S Practical Quantum Mechanics 1974(Berlin, Heidelberg, New York:Springer-Verlag)
|
[2] |
Eshghi M and Mehraban H 2016 Math. Meth. Aappl. Sci. 39 1599
|
[3] |
Lu L, Xie W and Shu Z 2011 Physica B 406 3735
|
[4] |
Hartmann R R, Robinson N J and Portnoi M E 2010 Phys. Rev. B 81 245431
|
[5] |
Ji N, Shi M, Guo J Y, Niu Z M and Liang H 2016 Phys. Rev. Lett. 117 062502
|
[6] |
Hayrapetyan D B, Kazaryan E M and Tevosyan H Kh 2013 Super. Microstruc. 64 204
|
[7] |
Wang D and Jin G 2009 Phys. Lett. A 373 4082
|
[8] |
Dong S H and Lozada-Cassou M 2004 Phys. Lett. A 330 168
|
[9] |
Jia C S, Li Y, Sun Y and Sun L T 2003 Phys. Lett. A 311 115
|
[10] |
Aydogdu O and Sever R 2010 Ann. Phys. 325 373
|
[11] |
Chen G 2004 Phys. Lett. A 326 55
|
[12] |
Ikhdair S M and Sever R 2007 J. Mol. Struc. THEOCHEM 806 155
|
[13] |
Arda A and Sever R 2012 Commun. Theor. Phys. 58 27
|
[14] |
Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
|
[15] |
Eshghi M and Mehraban H 2016 J. Math. Phys. 57 082105
|
[16] |
Eshghi M and Mehraban H 2017 C. R. Physique 18 47
|
[17] |
Slater J C 1949 Phys. Rev. 76 1592
|
[18] |
Ikhdair S M and Sever R 2010 Appl. Math. Comp. 216 545
|
[19] |
Rajbongshi H and Nimai Singh N 2013 J. Mod. Phys. 4 1540
|
[20] |
Arda A and Sever R 2010 Chin. Phys. Lett. 27 010106
|
[21] |
Falaye B J, Serrano F A and Dong S H 2016 Phys. Lett. A 380 267
|
[22] |
Jia C S, Wang P Q, Liu J Y and He S 2008 Int. J. Theor. Phys. 47 2513
|
[23] |
Eshghi M, Hamzavi M and Ikhdair S M 2013 Chin. Phys. B 22 030303
|
[24] |
Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41
|
[25] |
Eshghi M and Abdi M R 2013 Chin. Phys. C 37 053103
|
[26] |
Panahi H and Bakhshi Z 2011 J. Phys. A:Math. Theor. 44 175304
|
[27] |
Mustafa O and Habib Mazaherimousavi S 2009 Phys. Lett. A 373 325
|
[28] |
Ikhdair S M, Hamzavi M and Sever R 2012 Physica B 407 4523
|
[29] |
Bonatsos D, Georgoudis P E, Minkov N, Petrellis D and Quesne C 2013 Phys. Rev. C 88 034316
|
[30] |
Eshghi M, Mehraban H and Ikhdair S M 2016 Eur. Phys. J. A 52 201
|
[31] |
Ikhdair S M, Falaye B J and Hamzavi M 2015 Ann. Phys. 353 282
|
[32] |
Sharifi Z, Tajic F, Hamzavi M and Ikhdair S M 2015 Z. Naturf. A 70 499
|
[33] |
Bonatsos D, Georgoudis P E, Lenis D, Minkov N and Quesne C 2010 Phys. Lett. B 683 264
|
[34] |
Khordad R 2010 Solid State Sci. 12 1253
|
[35] |
Yuce C 2006 Phys. Rev. A 74 062106
|
[36] |
Ustoglu Unal V, Aksahin E and Aytekin O 2013 Phys. Rev. E 47 103
|
[37] |
Kestner N R and Sinanoglu O 1962 Phys. Rev. 128 2687
|
[38] |
Greiner W 2001 Quantum Mechanics:an Introduction (Berlin:Springer-Verlag)
|
[39] |
Dong S H 2007 Factorization Method in Quantum Mechanics (Springer)
|
[40] |
Slavyanov S Y, Lay W and Seeger A 2000 Special Functions:A Unifield Theory Based on Singularities (New York:Oxford University Press)
|
[41] |
Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
|
[42] |
Kryuchkov S V and Kukhar E I 2014 Physica B:Condens. Matter 445 93
|
[43] |
Weishbuch C and Vinter B 1993 Quantum Semiconductor Heterostructure (New York:Academic Press)
|
[44] |
Frankenberg C, Meiring J F, Van Weele M, Platt U and Wagner T 2005 Science 308 1010
|
[45] |
Baura A, Kumar Sen M and Chandra Bag B 2013 Chem. Phys. 417 30
|
[46] |
Haken H and Wolf H C 1995 Molecular Physics and Elements of Quantum Chemistry:Introduction to Experiments and Theory (Berlin:Springer)
|
[47] |
Arda A and Sever R 2012 J. Math. Chem. 50 971
|
[48] |
Figueiredo Medeiros E R and Bezerra de Mello E R 2012 Eur. Phys. J. C 72 2051
|
[49] |
Eshghi M, Mehraban H and Ikhdair S M 2017 Chin. Phys. B 26 060302
|
[50] |
Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279
|
[51] |
Eshghi M and Mehraban H 2017 Eur. Phys. J. Plus 132 121
|
[52] |
Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
|
[53] |
Nikoforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel:Birkhausar)
|
[54] |
Patria R K 1972 Statistical Mechanics (Oxford:Pergamon Press)
|
[55] |
Wang J F, Peng X L, Zhang L H, Wang C W and Jia C S 2017 Chem. Phys. Lett. 686 131
|
[56] |
Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
|
[57] |
Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
|
[58] |
Jia C S, Zhang L H and Wang C W 2017 Chem. Phys. Lett. 667 211
|
[59] |
Buchowiecki M 2017 Chem. Phys. Lett. 687 227
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|