ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Supercontinuum generation in seven-core photonic crystal fiber pumped by a broadband picosecond pulsed fiber amplifier |
Ning Su(苏宁), Ping-Xue Li(李平雪), Kun Xiao(肖坤), Xiao-Xiao Wang(王晓晓), Jian-Guo Liu(刘建国), Yue Shao(邵月), Meng Su(苏盟) |
Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China |
|
|
Abstract We report a supercontinuum source generated in seven-core photonic crystal fibers (PCFs) pumped by a self-made all-fiber picosecond pulsed broadband fiber amplifier. The amplifier's output average power is 60 W at 1150 nm with spectral width of 260 nm, and its repetition rate is 8.47 MHz with pulse width of 221 ps. With two different lengths of seven-core PCF, different output powers and spectra are obtained. When a 10 m long seven-core PCF is chosen, the output supercontinuum covers the wavelength range from 620 nm to 1700 nm, with the output power of 11.7 W. With only 2 m long seven-core PCF used in the same experiment, the wavelength of the supercontinuum spans from 680 nm to 1700 nm, with the output power of 20.4 W. The results show that the pulse width is 385 ps in the 10 m long seven-core PCF and 255 ps in the 2 m long one, respectively, due to the normal dispersion of the PCF.
|
Received: 15 November 2016
Revised: 16 March 2017
Accepted manuscript online:
|
PACS:
|
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61205047). |
Corresponding Authors:
Ping-Xue Li
E-mail: pxli@bjut.edu.cn
|
Cite this article:
Ning Su(苏宁), Ping-Xue Li(李平雪), Kun Xiao(肖坤), Xiao-Xiao Wang(王晓晓), Jian-Guo Liu(刘建国), Yue Shao(邵月), Meng Su(苏盟) Supercontinuum generation in seven-core photonic crystal fiber pumped by a broadband picosecond pulsed fiber amplifier 2017 Chin. Phys. B 26 074210
|
[1] |
Lindfors K, Kalkbrenner T, Stoller P and Sandoghdar V 2004 Phys. Rev. Lett. 93 037401
|
[2] |
Mori T, Yamamoto T, Kurokawa K and Tomita S 2010 IEICE Electron. Expr. 7 1504
|
[3] |
Holzwarth R, Udem T, Hänsch T W, Knight J C, Wadsworth W J and Russell P S J 2000 Phys. Rev. Lett. 85 2264
|
[4] |
Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
|
[5] |
Guo C Y, Ruan S C, Yan P G, Pan E M and Wei H F 2008 Opt. Express 18 11046
|
[6] |
Kho J L H, Rohde C A, Vanholsbeeck F and Simpson M C 2013 Opt. Commun. 294 250
|
[7] |
Guo C Y, Ouyang D Q, Ruan S C, Yan P G, Wei H F, Lin H Q, Wu Y M and Yang J H 2013 Chin. J. Lasers 40 0405003 (in Chinese)
|
[8] |
Song R, Hou J, Chen S P, Wang Y B and Lu Q S 2012 Acta Phys. Sin. 61 054217 (in Chinese)
|
[9] |
Chen H W, Guo L, Jin A J, Chen S P, Hou J and Lu Q S 2013 Acta Phys. Sin. 62 154207 (in Chinese)
|
[10] |
Cherif R, Zghal M, Nikolov I and Danailov M 2010 Opt. Commun. 283 4378
|
[11] |
Suzuki M, Baba M, Yoneya S and Kuroda H 2012 Appl. Phys. Lett. 101 191110
|
[12] |
Cheng C F, Wang X F and Lu B 2004 Acta Phys. Sin. 53 1826 (in Chinese)
|
[13] |
Shi Y L, Guo Q, Li L, Deng G R, Yang S P, Fan M G and Liu W B 2015 Infrared and Laser Engineering 44 3177 (in Chinese)
|
[14] |
Zhu C, Li Y, Wang X F, Zhang K, Xiong W L, Zhang H B, Zhang D Y and Zhang L M 2014 Laser & Infrared 44 0374 (in Chinese)
|
[15] |
Chi J J, Li P X, Hu H W, Yao Y F, Zhang G J, Yang C and Zhao Z Q 2014 Laser Phys. 24 085103
|
[16] |
Chen H W, Chen S P, Wang J H, Chen Z L and Hou J 2011 Opt. Commun. 284 5484
|
[17] |
Michaille L, Taylor D M, Bennett C R, Shepherd T J and Ward B G 2008 Opt. Lett. 33 71
|
[18] |
Fang X H, Hu M L, Huang L L, Chai L, Dai N L, Li J Y, Tashchilina A Y, Zheltikov A M and Wang C Y 2012 Opt. Lett. 37 2292
|
[19] |
Chi J J, Li P X, Liang B X, Yao Y F, Hu H W, Zhang G J, Zhang M M and Ma C M 2014 Appl. Phys. B 118 369
|
[20] |
Modotto D, Manili G, Minoni U, Wabnitz S, Angelis C D, Town G, Tonello A and Couderc V 2011 IEEE Photonics J. 3 1149
|
[21] |
Wei H F, Chen H W, Chen S P, Yan P G, Liu T, Guo L, Lei Y, Chen Z L, Li J, Zhang X B, Zhang G L, Hou J, Tong W J, Luo J, Li J Y and Chen K K 2012 Laser Phys. Lett. 10 045101
|
[22] |
Huang S S, Zhang G L, Wei H F, Li H Q, Lin R Y, Luo J, Chen K K and Yan P G 2013 Chin. J. Lasers 40 1105002 (in Chinese)
|
[23] |
Chen H W, Wei H F, Liu T, Zhou X F, Li J, Tong W J, Chen Z L, Chen S P, Hou J and Lu Q S 2014 Acta Phys. Sin. 63 044205 (in Chinese)
|
[24] |
Schimpf D N, Ruchert C, Nodop D, Limpert J, Tünnermann A and Salin F 2008 Opt. Express 16 17637
|
[25] |
Sobon G, Kaczmarek P, Antonczak A, Sotor J, Waz A and Abramski K M 2011 Appl. Phys. B 105 721
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|