ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
1.5-MHz repetition rate passively Q-switched Nd: YVO4 laser based on WS2 saturable absorber |
Xi Wang(王茜)1,2, Lu Li(李璐)1,2, Jin-Ping Li(李金萍)3, Yong-Gang Wang(王勇刚)1,3 |
1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China; 3 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China |
|
|
Abstract A transmission-type tungsten disulfide (WS2)-based saturable absorber (SA) is fabricated and applied to passively Q-switched Nd:YVO4 laser. The WS2 nanosheets are deposited on a quartz substrate by the vertical evaporation method. By inserting the WS2 SA into the plano-concave laser cavity, we achieve 153-ns pulses with an average output power of 1.19 W at 1064 nm. To the best of our knowledge, both of them are the best results among those obtained by the Q-switched solid-state lasers with WS2-based absorbers. The repetition rate ranges from 1.176 MHz to 1.578 MHz. As far as we know, it is the first time that MHz level Q-switched pulses have been generated in all solid state lasers based on low-dimensional materials so far.
|
Received: 23 September 2016
Revised: 13 November 2016
Accepted manuscript online:
|
PACS:
|
42.60.Gd
|
(Q-switching)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.70.Nq
|
(Other nonlinear optical materials; photorefractive and semiconductor materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61378024). |
Corresponding Authors:
Yong-Gang Wang
E-mail: chinawygxjw@snnu.edu.cn
|
Cite this article:
Xi Wang(王茜), Lu Li(李璐), Jin-Ping Li(李金萍), Yong-Gang Wang(王勇刚) 1.5-MHz repetition rate passively Q-switched Nd: YVO4 laser based on WS2 saturable absorber 2017 Chin. Phys. B 26 044203
|
[1] |
Maker G T and Ferguson A I 1989 Appl. Phys. Lett. 54 403
|
[2] |
Fan T Y and Byer R L 1988 Science 239 742
|
[3] |
Grossman W M, Gifford M and Wallace R W 1990 Opt. Lett. 15 622
|
[4] |
Wang A, Gollapudi S, Murphy K A, May R G, and Claus R O 1992 Opt. Lett. 17 1021
|
[5] |
Horiuchi R, Adachi K and Watanabe G 2008 Opt. Express 16 16729
|
[6] |
Huang F, Wang Y F, Wang J Y and Niu Y X 2003 Infrared and Laser Engineering 32 465 (in Chinese)
|
[7] |
Li G, Shen H B, Li L, Zhang C, Mao S J and Wang Y B 2013 Opt. Laser Technol. 47 221
|
[8] |
Druon F, Balembois F, Georges P and Brun A F 1999 Opt. Lett. 24 499
|
[9] |
Braun B, Kärtner F X, Keller U, et al. 1996 Opt. Lett. 21 405
|
[10] |
Mehner E, Bernard B, Giessen H, Kopf D and Braun B 2014 Opt. Lett. 39 2940
|
[11] |
Zayhowski J J and Dill III C 1994 Opt. Lett. 19 1427
|
[12] |
Li D Z, Xu X D, Meng J Q, Zhou D H, Xia C T, Wu F and Xu J 2010 Opt. Express 18 18649
|
[13] |
Dun Y Y, Li P, Chen X H and Ma B M 2016 Chin. Phys. Lett. 33 024201
|
[14] |
Cheng K, Zhao S Z, Yang K J, Li G Q, Li D C, Zhang G, Zhao B and Wang Y G 2011 Laser Phys. Lett. 8 418
|
[15] |
Yu H J, Zhang L, Wang Y G, Yan S L, Sun W, Li J M, Tsang Y and Lin X C 2013 Opt. Commun. 306 128
|
[16] |
Wang J L, Wang X L, He B R, Zhu J F, Wei Z Y and Wang Y G 2015 Chin. Phys. B 24 097601
|
[17] |
Li X L, Xu J L, Wu Y Z, He J L and Hao, X P 2011 Opt. Express 19 9950
|
[18] |
Zhao Y G, Li X L, Xu M M, Yu H H, Wu Y Z, Wang Z P, Hao X P and Xu X G 2013 Opt. Express 21 3516
|
[19] |
Wang Y G, Chen H R, Wen X M, Hsieh W F and Tang J 2011 Nanotechnology 22 455203
|
[20] |
Jia F Q, Chen H, Liu P, Huang Y Z, and Luo Z Q 2015 IEEE J. Sel. Topics Quantum Electron. 21 1601806
|
[21] |
Yu H H, Zhang H, Wang Y C, Zhao C J, Wang B L, Wen S C, Zhang H J and Wang J Y 2013 Laser Photon. Rev. 7 L77
|
[22] |
Sun Y J, Lee C K, Xu J L, Zhu Z J, Wang Y Q, Gao S F, Xia H P, You Z Y and Tu C Y 2015 Photon. Res. 3 A97
|
[23] |
Liu J H, Tian J R, Hu M T, Dou Z Y and Song Y R 2015 Chin. J. Lasers 42 0802004 (in Chinese)
|
[24] |
Liu J H, Tian J R, Hu M T, Xu R Q, Dou Z Y, Yu Z H and Song Y R 2015 Chin. Phys. B 24 024215
|
[25] |
Xu B, Cheng Y J, Wang Y, Huang Y Z, Peng J, Luo Z Q, Xu H Y, Cai Z P, Weng J and Moncorgé R 2014 Opt. Express 22 28934
|
[26] |
Ge P G, Liu J, Jiang S Z, Xu Y Y and Man B Y 2015 Photon. Res. 3 256
|
[27] |
Sun Y J, Xua J L, Gao S F, Lee C K, Xia H P, Wang Y, You Z Y and Tu C Y 2015 Mater. Lett. 160 268
|
[28] |
Cheng Y J, Peng J, Xu B, Yang H, Luo Z Q, Xu H Y, Cai Z Q and Weng J 2016 IEEE Photon. J. 8 1501606
|
[29] |
Lou F, Zhao R W, He J L, Jia Z T, Su X C, Wang Z W, Hou J and Zhang B T 2015 Photon. Res. 3 A25
|
[30] |
Zhang Y X, Wang S X, Yu H H, Zhang H J, Chen Y X, Mei L M, Di Lieto A, Tonelli M and Wang J Y 2015 Sci. Rep. 5 11342
|
[31] |
Kong L C, Xie G Q, Yuan P, Qian L J, Wang S X, Yu H H and Zhang H J 2015 Photon. Res. 3 A47
|
[32] |
Wang S X, Yu H H and Zhang H J 2015 Photon. Res. 3 A10
|
[33] |
Liu J H, Tian J R, Guoyu H Y, Xu R Q, Li K X, Song Y R, Zhang X P, Su L B and Xu J 2016 Chin. Phys. B 25 034207
|
[34] |
Lu D Z, Pan Z B, Zhang R, Xu T X, Yang R L, Yang B C, Liu Z Y, Yu H H, Zhang H J and Wang J Y 2016 Opt. Eng. 55 081312
|
[35] |
Wang Z W, Zhao R W, He J L, Zhang B T, Ning J, Wang Y R, Su X C, Hou J, Lou F, Yang K J, Fan Y S, Bian J T and Nie J S 2016 Opt. Express 24 1598
|
[36] |
Zhang R, Zhang Y X, Yu H H, Zhang H J, Yang R N, Yang B C, Liu Z Y and Wang J Y 2015 Adv. Opt. Mater. 3 1787
|
[37] |
Kong L C, Qin Z P, Xie G Q, Guo Z N, Zhang H, Yuan P and Qian L J 2016 Laser Phys. Lett. 13 045801
|
[38] |
Ma J, Lu S B, Guo Z N, Xu X D, Zhang H, Tang D Y and Fan D Y 2015 Opt. Express 23 22643
|
[39] |
Wang K P, Wang J, Fan J T, Lotya M, O'Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano. 7 9260
|
[40] |
Tucker A W, Birnbaum M, Fincher C L and Erler J W 1977 J. Appl. Phys. 48 4907
|
[41] |
Coleman J N, Lotya M, O'Neill A, et al. 2011 Science 331 568
|
[42] |
Wang Y G, Qu Z S, Liu J and Tsang Y H 2012 J. Lightwave Technol. 30 3259
|
[43] |
Ramakrishna Matte H S S, Gomathi A, Manna A K, Late D J, Datta R, Pati S K and Rao C N R 2010 Angew. Chem. 122 4153
|
[44] |
Wang K P, Feng Y Y, Chang C X, Zhan J X, Wang C W, Zhao Q Z, Coleman J N, Zhang L, J. Blauab W and Wang J 2014 Nanoscale 6 10530
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|