Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(9): 090701    DOI: 10.1088/1674-1056/25/9/090701
GENERAL Prev   Next  

Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis

Wei-Ning Zhao(赵维宁)1,2, Wei Fang(方伟)2, Li-Wei Sun(孙立微)1,2, Li-Hong Cui(崔立红)1,2, Yu-Peng Wang(王玉鹏)2
1. University of Chinese Academy of Sciences, Beijing 100049, China;
2. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Abstract  In order to satisfy the requirement of SI-traceable on-orbit absolute radiation calibration transfer with high accuracy for satellite remote sensors, a transfer chain consisting of a fiber coupling monochromator (FBM) and an integrating sphere transfer radiometer (ISTR) was designed in this paper. Depending on the Sun, this chain based on detectors provides precise spectral radiometric calibration and measurement to spectrometers in the reflective solar band (RSB) covering 300-2500 nm with a spectral bandwidth of 0.5-6 nm. It shortens the traditional chain based on lamp source and reduces the calibration uncertainty from 5% to 0.5% by using the cryogenic radiometer in space as a radiometric benchmark and trap detectors as secondary standard. This paper also gives a detailed uncertainty budget with reasonable distribution of each impact factor, including the weak spectral signal measurement with uncertainty of 0.28%. According to the peculiar design and comprehensive uncertainty analysis, it illustrates that the spectral radiance measurement uncertainty of the ISTR system can reach to 0.48%. The result satisfies the requirements of SI-traceable on-orbit calibration and has wider significance for expanding the application of the remote sensing data with high-quality.
Keywords:  SI-traceable calibration      on-orbit high-accuracy transfer chain      integrating sphere transfer radiometer      uncertainty analysis  
Received:  17 February 2016      Revised:  19 May 2016      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.60.Dq (Photometers, radiometers, and colorimeters)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
  42.87.-d (Optical testing techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 41474161) and the National High-Technology Program of China (Grant No. 2015AA123703).
Corresponding Authors:  Yu-Peng Wang     E-mail:  wangyp@ciomp.ac.cn

Cite this article: 

Wei-Ning Zhao(赵维宁), Wei Fang(方伟), Li-Wei Sun(孙立微), Li-Hong Cui(崔立红), Yu-Peng Wang(王玉鹏) Calibration chain design based on integrating sphere transfer radiometer for SI-traceable on-orbit spectral radiometric calibration and its uncertainty analysis 2016 Chin. Phys. B 25 090701

[1] Fang W, Yu B X, Wang Y P, Gong C H, Yang D J and Ye X 2009 Chinese Journal of Optics and Applied Optics 2 23 (in Chinese)
[2] Hassan O, Jeff M, Xiong X X, James B, Jack J, Thomas S, Shihyan L and Boryana E 2016 Journal of Remote Sensing 8 41
[3] Zhao M J, Si F Q, Lu Y H, Wang S M, Jiang Y, Zhou H J and Liu W Q 2013 Acta Phys. Sin. 62 249301 (in Chinese)
[4] Xiong X X, Sun J, Xie X B, Barnes W and Salomonson V V 2010 IEEE Trans. Geosci. Remote Sens. 48 535
[5] Hu X Q, Sun L, Liu J J, Ding L, Wang X H, Li Y, Zhang Y, Xu N and Chen L 2012 IEEE Trans. Geosci. Remote Sens. 50 4915
[6] Thuillier G, Foujols T, BolseeD, Gillotary D, Herse M, Peetermans M, Decuyper W, Mandel H, Sperfeld P, Pape S, Taubert D R and Hartmann J 2009 Solar Phys. 257 185
[7] Datla R U, Rice J P, Lykke K R, Johnson B C, Butler J J and Xiong X X 2011 J. Res. Natl. Inst. Stand. Technol. 11 6621
[8] Chander G, Hewison T J, Nigel F N, Wu X Q, Xiong X X and Blackwell W 2013 IEEE Trans. Geosci. Remote Sens. 51 1056
[9] Fox N, Weiss A K, Schmutz W, Thome K, Young D, Wielicki B, Winkler R and Woolliams E 2011 Phil. Trans. R. Soc. 369 4028
[10] Barnes R, Holmes A, Barnes W, Esaias W, McClain C and Svitek T 1994 NASA Tech. Memo. 22 104566
[11] Spyak P R, Smith D S, Thiry J and Burkhart C 2000 Appl. Opt. 39 5694
[12] Schaepman M E, Jehle M, Hueni A, et al. 2015 Remote Sens. Environ. 158 207
[13] Wang Y P, Hu X Q, Wang H R, Ye X and Fang W 2015 Optics and Presicion Engineering 23 1807 (in Chinese)
[14] Li J J, Zheng X B, Lu Y J, Zhang W, Xie P and Zou P 2009 Acta Phys. Sin. 58 6273 (in Chinese)
[15] Xia Z W, Wang K, Fang W and Wang Y P 2015 Optics and Precision Engineering 23 1880 (in Chinese)
[16] Chen J H, Zheng B C, Shao G H, Ge S J, Xu F and Lu Y Q 2015 Light Sci. Appl. 4 e360
[17] Qin Z Z, Prasad A S, Brannan T, MacRae A, Lezama A and Lvovsky A 2014 Light Sci. Appl. 4 e298
[18] Yan P Q, Li Z H, Shi Y F, Feng B C, Du B C, Du Y W, Tan T L and Wu G 2015 Optoelectron. Lett. 11 321
[19] Kang G, Coste P, Youn H, Faure F and Choi S 2010 IEEE Trans. Geosci. Remote Sens. 48 4322
[20] Keef J L and Thome K J 2009 J. Appl. Remote Sens. 3 033518
[21] Wielicki B A, Young D F, Mlynczak M G, et al. 2013 Bull. Amer. Meteor. Soc. 94 1519
[1] Estimation of lower refractivity uncertainty from radar sea clutter using Bayesian-MCMC method
Sheng Zheng (盛峥). Chin. Phys. B, 2013, 22(2): 029302.
No Suggested Reading articles found!