ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Probe gain via four-wave mixing based on spontaneously generated coherence |
Hong Yang(杨红)1, Ting-gui Zhang(张廷桂)2, Yan Zhang(张岩)3 |
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China; 2 School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China; 3 School of Physics, Northeast Normal University, Changchun 130024, China |
|
|
Abstract We have studied the probe gain via a double-Λ atomic system with a pair of closely lying lower levels in the presence of two probe and two coherent pump fields. The inversionless gain can be realized by using nondegenerate four-wave mixing under the condition of spontaneously generated coherence (SGC) owing to near-degenerate lower levels. Note that by using SGC, two probe fields can be amplified with more remarkable amplitudes, and the gain spectra of an extremely narrow linewidth can be obtained. Last but not least, our results show that the probe gain is quite sensitive to relative phases due to the SGC presence which allows one to modulate the gain spectra periodically by phase modulation, and can also be influenced by all laser field intensities and frequencies, and the angles between dipole elements.
|
Received: 09 August 2016
Revised: 23 October 2016
Accepted manuscript online:
|
PACS:
|
42.50.Gy
|
(Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
32.80.Qk
|
(Coherent control of atomic interactions with photons)
|
|
Fund: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 20151005, 20151015, and 20161006), the National Natural Science Foundation of China (Grant Nos. 11247005, 51262007, 11501153, and 41564006), the Postdoctoral Scientific Research Program of Jilin Province, China (Grant No. RB201330), the Project Sponsored by Science Research Foundation for Returned Overseas Chinese Scholars, and the Fundamental Research Funds for the Central Universities, China (Grant No. 12QNJJ006). |
Corresponding Authors:
Yan Zhang
E-mail: zhangy345@nenu.edu.cn
|
Cite this article:
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩) Probe gain via four-wave mixing based on spontaneously generated coherence 2017 Chin. Phys. B 26 024204
|
[1] |
Harris S E 1989 Phys. Rev. Lett. 62 1033
|
[2] |
Agarwal G S 1991 Phys. Rev. A 44 1
|
[3] |
Padmabandu G G 1996 Phys. Rev. Lett. 76 12
|
[4] |
Zhu Y F 1997 Phys. Rev. A 55 4568
|
[5] |
Mompart J 2000 Opt. B: Quantum Semiclass. Opt. 2 R7
|
[6] |
Kocharovskaya O, Matsko A B and Rostovtsev Y 2001 Phys. Rev. A 65 013803
|
[7] |
Bhatia P S, Welch G R and Scully M O 2001 J. Opt. Soc. Am. B 18 001587
|
[8] |
Mompart J, Corbalan R and Vilaseca R 2004 Radiophysics and Quantum Electronics 47 783
|
[9] |
Scully M O and Zhu S Y 1989 Phys. Rev. Lett. 62 24
|
[10] |
Imamoglu A, Field J E and Harri S E 1991 Phys. Rev. Lett. 66 9
|
[11] |
Zhang B, Xu W H, Zhang H F and Gao J Y 2004 Chin. Phys. 13 1722
|
[12] |
Kozlov V V, Rostovtsev Y and Scully M O 2006 Phys. Rev. A 74 063829
|
[13] |
Arimondo E 1996 Prog. Opt. 35 257
|
[14] |
Scully M O and Zubairy M S 1997 Quantum Optics, Vol. 2 (Cambridge: Cambridge University Press) pp. 230-233
|
[15] |
Alam S 1999 (Bellingham, WA: SPIE Optical Engineering Press) pp. 361-425
|
[16] |
Zibrov A S 1995 Phys. Rev. Lett. 75 1499
|
[17] |
Zhu Y F 1996 Phys. Rev. A 53 2742
|
[18] |
Ghafoor F, Zhu S Y and Zubair M S Y 2000 Phys. Rev. A 62 013811
|
[19] |
Wu J H, Xu W H, Zhang H F and Gao J Y 2002 Opt. Commun. 206 135
|
[20] |
Wu J H, Zheng L Y and Gao J Y 2002 Opt. Commun. 211 257
|
[21] |
Bai Y F 2004 Phys. Rev. A 69 043814
|
[22] |
Zhang Y, Liu Y M and Yang H 2015 Opt. Commun. 343 183
|
[23] |
Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
|
[24] |
Zhu S Y 1996 Phys. Rev. Lett. 76 388
|
[25] |
Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
|
[26] |
Gao J W, Bao Q Q, Wan R G, Cui C L and Wu J H 2011 Phys. Rev. A 83 053815
|
[27] |
Menon S and Agarwal G S 1998 Phys. Rev. A 7 4014
|
[28] |
Swain S, Zhou P and Ficek Z 2000 Phys. Rev. A 61 043410
|
[29] |
Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M and Zuo Z C 2015 Acta Phys. Sin. 64 154208 (in Chinese)
|
[30] |
Jiang X J, Zhang H C and Wang Y Z 2016 Chin. Phys. B 25 034204
|
[31] |
Abrams R L and Lind R C 1978 Opt. Lett. 2 94
|
[32] |
Pinadd M, Grandclement D and Grynberg G 1986 Phys. Rev. A 10 755
|
[33] |
Ham B S, Shahriar M S and Hemmer P R 1997 Opt. Lett. 22 1138
|
[34] |
Guerin W, Michaud F and Kaiser R 2008 Phys. Rev. Lett. 101 093002
|
[35] |
Schilke A, Zimmermann C, Courteille P W and Guerin W 2012 Phys. Rev. A 86 023809
|
[36] |
Zhang Y, Gao J W, Cui C L, Jiang Y and Wu J H 2010 Phys. Lett. A 374 1088
|
[37] |
Yang H, Yang L, Wang X C, Cui C L, Zhang Y and Wu J H 2013 Phys. Rev. A 88 063832
|
[38] |
Wu J H, Artoni M and La Rocca G C 2013 Phys. Rev. A 88 043823
|
[39] |
Artoni M and Loudon R 1998 Phys. Rev. A 57 622
|
[40] |
Tian S C and Gao J Y 2012 Chin. Phys. B 21 064206
|
[41] |
Shahriar W S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865
|
[42] |
Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409
|
[43] |
Zavatta A, Artoni M, Viscor D and La Rocca G 2014 Sci. Rep. 4 3941
|
[44] |
Maichen W, Gaggl R, Korsunsky E and Windholz L 1995 Europhys. Lett. 31 189
|
[45] |
Artoni M and Zavatta A 2015 Phys. Rev. Lett. 115 113005
|
[46] |
Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
|
[47] |
Keaveney J, Sargsyan A, Sarkisyan D, Papoyan A and Admas C S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075002
|
[48] |
Stehlik J, Liu Y Y, Eichler C, Hartke T R, Mi X, Gullans M J, Taylor J M and Petta J R 2016 Phys. Rev. X accepted
|
[49] |
Lin G W, Yang J, Niu Y P and Gong S Q 2016 Chin. Phys. B 25 014201
|
[50] |
Dutt M V, Cheng J, Li B, Xu X, et al. 2005 Phys. Rev. Lett. 94 227403
|
[51] |
Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. Lett. 103 063602
|
[52] |
Wang C L, Li A J, Zhou X Y, Kang Z H, Yun J and Gao J Y 2008 Opt. Lett. 33 687
|
[53] |
Zhang Y, Liu Y M, Zheng T Y and Wu J H 2016 Phys. Rev. A 94 013836
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|