Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 024204    DOI: 10.1088/1674-1056/26/2/024204
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Probe gain via four-wave mixing based on spontaneously generated coherence

Hong Yang(杨红)1, Ting-gui Zhang(张廷桂)2, Yan Zhang(张岩)3
1 College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China;
2 School of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China;
3 School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  We have studied the probe gain via a double-Λ atomic system with a pair of closely lying lower levels in the presence of two probe and two coherent pump fields. The inversionless gain can be realized by using nondegenerate four-wave mixing under the condition of spontaneously generated coherence (SGC) owing to near-degenerate lower levels. Note that by using SGC, two probe fields can be amplified with more remarkable amplitudes, and the gain spectra of an extremely narrow linewidth can be obtained. Last but not least, our results show that the probe gain is quite sensitive to relative phases due to the SGC presence which allows one to modulate the gain spectra periodically by phase modulation, and can also be influenced by all laser field intensities and frequencies, and the angles between dipole elements.
Keywords:  probe gain      four-wave mixing      spontaneously generated coherence      narrow spectra linewidth  
Received:  09 August 2016      Revised:  23 October 2016      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
Fund: Project supported by the Natural Science Foundation of Hainan Province, China (Grant Nos. 20151005, 20151015, and 20161006), the National Natural Science Foundation of China (Grant Nos. 11247005, 51262007, 11501153, and 41564006), the Postdoctoral Scientific Research Program of Jilin Province, China (Grant No. RB201330), the Project Sponsored by Science Research Foundation for Returned Overseas Chinese Scholars, and the Fundamental Research Funds for the Central Universities, China (Grant No. 12QNJJ006).
Corresponding Authors:  Yan Zhang     E-mail:  zhangy345@nenu.edu.cn

Cite this article: 

Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩) Probe gain via four-wave mixing based on spontaneously generated coherence 2017 Chin. Phys. B 26 024204

[1] Harris S E 1989 Phys. Rev. Lett. 62 1033
[2] Agarwal G S 1991 Phys. Rev. A 44 1
[3] Padmabandu G G 1996 Phys. Rev. Lett. 76 12
[4] Zhu Y F 1997 Phys. Rev. A 55 4568
[5] Mompart J 2000 Opt. B: Quantum Semiclass. Opt. 2 R7
[6] Kocharovskaya O, Matsko A B and Rostovtsev Y 2001 Phys. Rev. A 65 013803
[7] Bhatia P S, Welch G R and Scully M O 2001 J. Opt. Soc. Am. B 18 001587
[8] Mompart J, Corbalan R and Vilaseca R 2004 Radiophysics and Quantum Electronics 47 783
[9] Scully M O and Zhu S Y 1989 Phys. Rev. Lett. 62 24
[10] Imamoglu A, Field J E and Harri S E 1991 Phys. Rev. Lett. 66 9
[11] Zhang B, Xu W H, Zhang H F and Gao J Y 2004 Chin. Phys. 13 1722
[12] Kozlov V V, Rostovtsev Y and Scully M O 2006 Phys. Rev. A 74 063829
[13] Arimondo E 1996 Prog. Opt. 35 257
[14] Scully M O and Zubairy M S 1997 Quantum Optics, Vol. 2 (Cambridge: Cambridge University Press) pp. 230-233
[15] Alam S 1999 (Bellingham, WA: SPIE Optical Engineering Press) pp. 361-425
[16] Zibrov A S 1995 Phys. Rev. Lett. 75 1499
[17] Zhu Y F 1996 Phys. Rev. A 53 2742
[18] Ghafoor F, Zhu S Y and Zubair M S Y 2000 Phys. Rev. A 62 013811
[19] Wu J H, Xu W H, Zhang H F and Gao J Y 2002 Opt. Commun. 206 135
[20] Wu J H, Zheng L Y and Gao J Y 2002 Opt. Commun. 211 257
[21] Bai Y F 2004 Phys. Rev. A 69 043814
[22] Zhang Y, Liu Y M and Yang H 2015 Opt. Commun. 343 183
[23] Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
[24] Zhu S Y 1996 Phys. Rev. Lett. 76 388
[25] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[26] Gao J W, Bao Q Q, Wan R G, Cui C L and Wu J H 2011 Phys. Rev. A 83 053815
[27] Menon S and Agarwal G S 1998 Phys. Rev. A 7 4014
[28] Swain S, Zhou P and Ficek Z 2000 Phys. Rev. A 61 043410
[29] Wang M, Bai J H, Pei L Y, Lu X G, Gao Y L, Wang R Q, Wu L A, Yang S P, Pang Z G, Fu P M and Zuo Z C 2015 Acta Phys. Sin. 64 154208 (in Chinese)
[30] Jiang X J, Zhang H C and Wang Y Z 2016 Chin. Phys. B 25 034204
[31] Abrams R L and Lind R C 1978 Opt. Lett. 2 94
[32] Pinadd M, Grandclement D and Grynberg G 1986 Phys. Rev. A 10 755
[33] Ham B S, Shahriar M S and Hemmer P R 1997 Opt. Lett. 22 1138
[34] Guerin W, Michaud F and Kaiser R 2008 Phys. Rev. Lett. 101 093002
[35] Schilke A, Zimmermann C, Courteille P W and Guerin W 2012 Phys. Rev. A 86 023809
[36] Zhang Y, Gao J W, Cui C L, Jiang Y and Wu J H 2010 Phys. Lett. A 374 1088
[37] Yang H, Yang L, Wang X C, Cui C L, Zhang Y and Wu J H 2013 Phys. Rev. A 88 063832
[38] Wu J H, Artoni M and La Rocca G C 2013 Phys. Rev. A 88 043823
[39] Artoni M and Loudon R 1998 Phys. Rev. A 57 622
[40] Tian S C and Gao J Y 2012 Chin. Phys. B 21 064206
[41] Shahriar W S and Hemmer P R 1990 Phys. Rev. Lett. 65 1865
[42] Morigi G, Franke-Arnold S and Oppo G L 2002 Phys. Rev. A 66 053409
[43] Zavatta A, Artoni M, Viscor D and La Rocca G 2014 Sci. Rep. 4 3941
[44] Maichen W, Gaggl R, Korsunsky E and Windholz L 1995 Europhys. Lett. 31 189
[45] Artoni M and Zavatta A 2015 Phys. Rev. Lett. 115 113005
[46] Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
[47] Keaveney J, Sargsyan A, Sarkisyan D, Papoyan A and Admas C S 2014 J. Phys. B: At. Mol. Opt. Phys. 47 075002
[48] Stehlik J, Liu Y Y, Eichler C, Hartke T R, Mi X, Gullans M J, Taylor J M and Petta J R 2016 Phys. Rev. X accepted
[49] Lin G W, Yang J, Niu Y P and Gong S Q 2016 Chin. Phys. B 25 014201
[50] Dutt M V, Cheng J, Li B, Xu X, et al. 2005 Phys. Rev. Lett. 94 227403
[51] Yannopapas V, Paspalakis E and Vitanov N V 2009 Phys. Rev. Lett. 103 063602
[52] Wang C L, Li A J, Zhou X Y, Kang Z H, Yun J and Gao J Y 2008 Opt. Lett. 33 687
[53] Zhang Y, Liu Y M, Zheng T Y and Wu J H 2016 Phys. Rev. A 94 013836
[1] Modulated spatial transmission signals in the photonic bandgap
Wenqi Xu(许文琪), Hui Wang(王慧), Daohong Xie(谢道鸿), Junling Che(车俊岭), and Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2022, 31(12): 124209.
[2] Controllable four-wave mixing response in a dual-cavity hybrid optomechanical system
Lei Shang(尚蕾), Bin Chen(陈彬), Li-Li Xing(邢丽丽), Jian-Bin Chen(陈建宾), Hai-Bin Xue(薛海斌), and Kang-Xian Guo(郭康贤). Chin. Phys. B, 2021, 30(5): 054209.
[3] A two-mode squeezed light based on a double-pump phase-matching geometry
Xuan-Jian He(何烜坚), Jun Jia(贾俊), Gao-Feng Jiao(焦高锋), Li-Qing Chen(陈丽清), Chun-Hua Yuan(袁春华), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2020, 29(7): 074207.
[4] Coherent 420 nm laser beam generated by four-wave mixing in Rb vapor with a single continuous-wave laser
Hao Liu(刘浩), Jin-Peng Yuan(元晋鹏), Li-Rong Wang(汪丽蓉), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(4): 043203.
[5] Simultaneous polarization separation and switching for 100-Gbps DP-QPSK signals in backbone networks
Yu-Long Su(苏玉龙), Huan Feng(冯欢), Hui Hu(胡辉), Wei Wang(汪伟), Tao Duan(段弢), Yi-Shan Wang(王屹山), Jin-Hai Si(司金海), Xiao-Ping Xie(谢小平), He-Ning Yang(杨合宁), Xin-Ning Huang(黄新宁). Chin. Phys. B, 2019, 28(2): 024216.
[6] Electro-optomechanical switch via tunable bistability and four-wave mixing
Kamran Ullah. Chin. Phys. B, 2019, 28(11): 114209.
[7] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[8] Enhancement of multiple four-wave mixing via cascaded fibers with discrete dispersion decreasing
Jia-Bao Li(李嘉宝), Ling-Jie Kong(孔令杰), Xiao-Sheng Xiao(肖晓晟), Chang-Xi Yang(杨昌喜). Chin. Phys. B, 2017, 26(6): 064205.
[9] Photon statistics of pulse-pumped four-wave mixing in fiber with weak signal injection
Nan-Nan Liu(刘楠楠), Yu-Hong Liu(刘宇宏), Jia-Min Li(李嘉敏), Xiao-Ying Li(李小英). Chin. Phys. B, 2016, 25(7): 074203.
[10] Observation of multi-Raman gain resonances in rubidium vapor
Jun Liu(刘俊), Dong Wei(卫栋), Jin-wen Wang(王金文), Ya Yu(余娅), Hua-jie Hu(胡华杰), Hong Gao(高宏), Fu-li Li(李福利). Chin. Phys. B, 2016, 25(11): 114204.
[11] Beam propagation method for wide-fieldnonlinear wave mixing microscope
Lv Yong-Gang (吕永钢), Ji Zi-Heng (纪子衡), Yu Wen-Tao (于文韬), Shi Ke-Bin (施可彬). Chin. Phys. B, 2015, 24(9): 094211.
[12] Image information transfer via electromagnetically induced transparency-based slow light
Wang Xiao-Xiao (王潇潇), Sun Jia-Xiang (孙家翔), Sun Yuan-Hang (孙远航), Li Ai-Jun (李爱军), Chen Yi (陈怡), Zhang Xiao-Jun (张晓军), Kang Zhi-Hui (康智慧), Wang Lei (王磊), Wang Hai-Hua (王海华), Gao Jin-Yue (高锦岳). Chin. Phys. B, 2015, 24(7): 074204.
[13] Controllable optical mirror of cesium atoms with four-wave mixing
Zhou Hai-Tao (周海涛), Wang Dan (王丹), Guo Miao-Jun (郭苗军), Gao Jiang-Rui (郜江瑞), Zhang Jun-Xiang (张俊香). Chin. Phys. B, 2014, 23(9): 093204.
[14] Experimental study on the Stokes effect in disordered birefringent microstructure fibers
Zhao Yuan-Yuan (赵原源), Zhou Gui-Yao (周桂耀), Li Jian-She (李建设), Zhang Zhi-Yuan (张志远), Han Ying (韩颖). Chin. Phys. B, 2014, 23(8): 084208.
[15] Tunable microwave signal generation based on an Opto-DMD processor and a photonic crystal fiber
Wang Tao (王涛), Sang Xin-Zhu (桑新柱), Yan Bin-Bin (颜玢玢), Ai Qi (艾琪), Li Yan (李妍), Chen Xiao (陈笑), Zhang Ying (张颖), Chen Gen-Xiang (陈根祥), Song Fei-Jun (宋菲君), Zhang Xia (张霞), Wang Kui-Ru (王葵如), Yuan Jin-Hui (苑金辉), Yu Chong-Xiu (余重秀), Xiao Feng (肖峰), Alameh Kamal. Chin. Phys. B, 2014, 23(6): 064217.
No Suggested Reading articles found!